Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ≠ ∅ ) |
2 |
|
psmetres2 |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) ∈ ( PsMet ‘ 𝐴 ) ) |
3 |
2
|
3adant1 |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) ∈ ( PsMet ‘ 𝐴 ) ) |
4 |
|
oveq2 |
⊢ ( 𝑎 = 𝑏 → ( 0 [,) 𝑎 ) = ( 0 [,) 𝑏 ) ) |
5 |
4
|
imaeq2d |
⊢ ( 𝑎 = 𝑏 → ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) |
6 |
5
|
cbvmptv |
⊢ ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) = ( 𝑏 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) |
7 |
6
|
rneqi |
⊢ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) = ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) |
8 |
7
|
metustfbas |
⊢ ( ( 𝐴 ≠ ∅ ∧ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) ∈ ( PsMet ‘ 𝐴 ) ) → ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∈ ( fBas ‘ ( 𝐴 × 𝐴 ) ) ) |
9 |
1 3 8
|
syl2anc |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∈ ( fBas ‘ ( 𝐴 × 𝐴 ) ) ) |
10 |
|
fgval |
⊢ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∈ ( fBas ‘ ( 𝐴 × 𝐴 ) ) → ( ( 𝐴 × 𝐴 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ) = { 𝑣 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∣ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑣 ) ≠ ∅ } ) |
11 |
9 10
|
syl |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( 𝐴 × 𝐴 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ) = { 𝑣 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∣ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑣 ) ≠ ∅ } ) |
12 |
|
metuval |
⊢ ( ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) ∈ ( PsMet ‘ 𝐴 ) → ( metUnif ‘ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) ) = ( ( 𝐴 × 𝐴 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ) ) |
13 |
3 12
|
syl |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( metUnif ‘ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) ) = ( ( 𝐴 × 𝐴 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ) ) |
14 |
|
fvex |
⊢ ( metUnif ‘ 𝐷 ) ∈ V |
15 |
3
|
elfvexd |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ∈ V ) |
16 |
15 15
|
xpexd |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 × 𝐴 ) ∈ V ) |
17 |
|
restval |
⊢ ( ( ( metUnif ‘ 𝐷 ) ∈ V ∧ ( 𝐴 × 𝐴 ) ∈ V ) → ( ( metUnif ‘ 𝐷 ) ↾t ( 𝐴 × 𝐴 ) ) = ran ( 𝑣 ∈ ( metUnif ‘ 𝐷 ) ↦ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
18 |
14 16 17
|
sylancr |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( metUnif ‘ 𝐷 ) ↾t ( 𝐴 × 𝐴 ) ) = ran ( 𝑣 ∈ ( metUnif ‘ 𝐷 ) ↦ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
19 |
|
inss2 |
⊢ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) |
20 |
|
sseq1 |
⊢ ( 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) → ( 𝑢 ⊆ ( 𝐴 × 𝐴 ) ↔ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) ) ) |
21 |
19 20
|
mpbiri |
⊢ ( 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) → 𝑢 ⊆ ( 𝐴 × 𝐴 ) ) |
22 |
|
vex |
⊢ 𝑢 ∈ V |
23 |
22
|
elpw |
⊢ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ↔ 𝑢 ⊆ ( 𝐴 × 𝐴 ) ) |
24 |
21 23
|
sylibr |
⊢ ( 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) → 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ) |
25 |
24
|
rexlimivw |
⊢ ( ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) → 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ) |
26 |
25
|
adantl |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) → 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ) |
27 |
|
nfv |
⊢ Ⅎ 𝑎 ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) |
28 |
|
nfmpt1 |
⊢ Ⅎ 𝑎 ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
29 |
28
|
nfrn |
⊢ Ⅎ 𝑎 ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
30 |
29
|
nfcri |
⊢ Ⅎ 𝑎 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
31 |
27 30
|
nfan |
⊢ Ⅎ 𝑎 ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
32 |
|
nfv |
⊢ Ⅎ 𝑎 𝑤 ⊆ 𝑣 |
33 |
31 32
|
nfan |
⊢ Ⅎ 𝑎 ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) |
34 |
|
nfmpt1 |
⊢ Ⅎ 𝑎 ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) |
35 |
34
|
nfrn |
⊢ Ⅎ 𝑎 ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) |
36 |
|
nfcv |
⊢ Ⅎ 𝑎 𝒫 𝑢 |
37 |
35 36
|
nfin |
⊢ Ⅎ 𝑎 ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) |
38 |
|
nfcv |
⊢ Ⅎ 𝑎 ∅ |
39 |
37 38
|
nfne |
⊢ Ⅎ 𝑎 ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ |
40 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → 𝑎 ∈ ℝ+ ) |
41 |
|
ineq1 |
⊢ ( 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) → ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) = ( ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) |
42 |
41
|
adantl |
⊢ ( ( ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) = ( ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) |
43 |
|
simp2 |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) |
44 |
|
psmetf |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) |
45 |
|
ffun |
⊢ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* → Fun 𝐷 ) |
46 |
|
respreima |
⊢ ( Fun 𝐷 → ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) = ( ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) |
47 |
43 44 45 46
|
4syl |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) = ( ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) |
48 |
47
|
ad6antr |
⊢ ( ( ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) = ( ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) |
49 |
42 48
|
eqtr4d |
⊢ ( ( ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) |
50 |
|
rspe |
⊢ ( ( 𝑎 ∈ ℝ+ ∧ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) → ∃ 𝑎 ∈ ℝ+ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) |
51 |
40 49 50
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ∃ 𝑎 ∈ ℝ+ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) |
52 |
|
vex |
⊢ 𝑤 ∈ V |
53 |
52
|
inex1 |
⊢ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ V |
54 |
|
eqid |
⊢ ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) = ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) |
55 |
54
|
elrnmpt |
⊢ ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ V → ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑎 ∈ ℝ+ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ) |
56 |
53 55
|
ax-mp |
⊢ ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑎 ∈ ℝ+ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) |
57 |
51 56
|
sylibr |
⊢ ( ( ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ) |
58 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → 𝑤 ⊆ 𝑣 ) |
59 |
|
ssinss1 |
⊢ ( 𝑤 ⊆ 𝑣 → ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ 𝑣 ) |
60 |
58 59
|
syl |
⊢ ( ( ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ 𝑣 ) |
61 |
|
inss2 |
⊢ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) |
62 |
61
|
a1i |
⊢ ( ( ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) ) |
63 |
|
pweq |
⊢ ( 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) → 𝒫 𝑢 = 𝒫 ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) |
64 |
63
|
eleq2d |
⊢ ( 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) → ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ 𝒫 𝑢 ↔ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ 𝒫 ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
65 |
53
|
elpw |
⊢ ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ 𝒫 ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ↔ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) |
66 |
64 65
|
bitrdi |
⊢ ( 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) → ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ 𝒫 𝑢 ↔ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
67 |
|
ssin |
⊢ ( ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ 𝑣 ∧ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) ) ↔ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) |
68 |
66 67
|
bitr4di |
⊢ ( 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) → ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ 𝒫 𝑢 ↔ ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ 𝑣 ∧ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) ) ) ) |
69 |
68
|
ad5antlr |
⊢ ( ( ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ 𝒫 𝑢 ↔ ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ 𝑣 ∧ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) ) ) ) |
70 |
60 62 69
|
mpbir2and |
⊢ ( ( ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ 𝒫 𝑢 ) |
71 |
|
inelcm |
⊢ ( ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∧ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ 𝒫 𝑢 ) → ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) |
72 |
57 70 71
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) |
73 |
|
simplr |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) → 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
74 |
|
eqid |
⊢ ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) = ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
75 |
74
|
elrnmpt |
⊢ ( 𝑤 ∈ V → ( 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑎 ∈ ℝ+ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
76 |
75
|
elv |
⊢ ( 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑎 ∈ ℝ+ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
77 |
73 76
|
sylib |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) → ∃ 𝑎 ∈ ℝ+ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
78 |
33 39 72 77
|
r19.29af2 |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) → ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) |
79 |
|
ssn0 |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≠ ∅ ) → 𝑋 ≠ ∅ ) |
80 |
79
|
ancoms |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ⊆ 𝑋 ) → 𝑋 ≠ ∅ ) |
81 |
80
|
3adant2 |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝑋 ≠ ∅ ) |
82 |
|
metuel |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝑣 ∈ ( metUnif ‘ 𝐷 ) ↔ ( 𝑣 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ 𝑣 ) ) ) |
83 |
81 43 82
|
syl2anc |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑣 ∈ ( metUnif ‘ 𝐷 ) ↔ ( 𝑣 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ 𝑣 ) ) ) |
84 |
83
|
simplbda |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) → ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ 𝑣 ) |
85 |
84
|
adantr |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) → ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ 𝑣 ) |
86 |
78 85
|
r19.29a |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) → ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) |
87 |
86
|
r19.29an |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) → ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) |
88 |
26 87
|
jca |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) → ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) |
89 |
|
simprl |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ) |
90 |
89
|
elpwid |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → 𝑢 ⊆ ( 𝐴 × 𝐴 ) ) |
91 |
|
simpl3 |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → 𝐴 ⊆ 𝑋 ) |
92 |
|
xpss12 |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 × 𝐴 ) ⊆ ( 𝑋 × 𝑋 ) ) |
93 |
91 91 92
|
syl2anc |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → ( 𝐴 × 𝐴 ) ⊆ ( 𝑋 × 𝑋 ) ) |
94 |
90 93
|
sstrd |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → 𝑢 ⊆ ( 𝑋 × 𝑋 ) ) |
95 |
|
difssd |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝑋 × 𝑋 ) ) |
96 |
94 95
|
unssd |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝑋 × 𝑋 ) ) |
97 |
|
simplr |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → 𝑏 ∈ ℝ+ ) |
98 |
|
eqidd |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) |
99 |
4
|
imaeq2d |
⊢ ( 𝑎 = 𝑏 → ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) |
100 |
99
|
rspceeqv |
⊢ ( ( 𝑏 ∈ ℝ+ ∧ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) → ∃ 𝑎 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
101 |
97 98 100
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ∃ 𝑎 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
102 |
43
|
ad4antr |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) |
103 |
|
cnvexg |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ◡ 𝐷 ∈ V ) |
104 |
|
imaexg |
⊢ ( ◡ 𝐷 ∈ V → ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∈ V ) |
105 |
74
|
elrnmpt |
⊢ ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∈ V → ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑎 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
106 |
102 103 104 105
|
4syl |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑎 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
107 |
101 106
|
mpbird |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
108 |
|
cnvimass |
⊢ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ⊆ dom 𝐷 |
109 |
108 44
|
fssdm |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ⊆ ( 𝑋 × 𝑋 ) ) |
110 |
102 109
|
syl |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ⊆ ( 𝑋 × 𝑋 ) ) |
111 |
|
ssdif0 |
⊢ ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ⊆ ( 𝑋 × 𝑋 ) ↔ ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∖ ( 𝑋 × 𝑋 ) ) = ∅ ) |
112 |
110 111
|
sylib |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∖ ( 𝑋 × 𝑋 ) ) = ∅ ) |
113 |
|
0ss |
⊢ ∅ ⊆ 𝑢 |
114 |
112 113
|
eqsstrdi |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∖ ( 𝑋 × 𝑋 ) ) ⊆ 𝑢 ) |
115 |
|
respreima |
⊢ ( Fun 𝐷 → ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) = ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) |
116 |
102 44 45 115
|
4syl |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) = ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) |
117 |
|
simpr |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) |
118 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → 𝑣 ∈ 𝒫 𝑢 ) |
119 |
118
|
elpwid |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → 𝑣 ⊆ 𝑢 ) |
120 |
117 119
|
eqsstrrd |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ⊆ 𝑢 ) |
121 |
116 120
|
eqsstrrd |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∩ ( 𝐴 × 𝐴 ) ) ⊆ 𝑢 ) |
122 |
114 121
|
unssd |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ( ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∖ ( 𝑋 × 𝑋 ) ) ∪ ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑢 ) |
123 |
|
ssundif |
⊢ ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ⊆ ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ↔ ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∖ 𝑢 ) ⊆ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) |
124 |
|
difcom |
⊢ ( ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∖ 𝑢 ) ⊆ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ↔ ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∖ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑢 ) |
125 |
|
difdif2 |
⊢ ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∖ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) = ( ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∖ ( 𝑋 × 𝑋 ) ) ∪ ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) |
126 |
125
|
sseq1i |
⊢ ( ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∖ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑢 ↔ ( ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∖ ( 𝑋 × 𝑋 ) ) ∪ ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑢 ) |
127 |
123 124 126
|
3bitri |
⊢ ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ⊆ ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ↔ ( ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∖ ( 𝑋 × 𝑋 ) ) ∪ ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑢 ) |
128 |
122 127
|
sylibr |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ⊆ ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ) |
129 |
|
sseq1 |
⊢ ( 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) → ( 𝑤 ⊆ ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ↔ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ⊆ ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ) ) |
130 |
129
|
rspcev |
⊢ ( ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ⊆ ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ) → ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ) |
131 |
107 128 130
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ) |
132 |
|
elin |
⊢ ( 𝑣 ∈ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ↔ ( 𝑣 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ) |
133 |
6
|
elrnmpt |
⊢ ( 𝑣 ∈ V → ( 𝑣 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑏 ∈ ℝ+ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) ) |
134 |
133
|
elv |
⊢ ( 𝑣 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑏 ∈ ℝ+ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) |
135 |
134
|
anbi1i |
⊢ ( ( 𝑣 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ↔ ( ∃ 𝑏 ∈ ℝ+ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ) |
136 |
|
ancom |
⊢ ( ( ∃ 𝑏 ∈ ℝ+ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ↔ ( 𝑣 ∈ 𝒫 𝑢 ∧ ∃ 𝑏 ∈ ℝ+ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) ) |
137 |
132 135 136
|
3bitri |
⊢ ( 𝑣 ∈ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ↔ ( 𝑣 ∈ 𝒫 𝑢 ∧ ∃ 𝑏 ∈ ℝ+ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) ) |
138 |
137
|
exbii |
⊢ ( ∃ 𝑣 𝑣 ∈ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ↔ ∃ 𝑣 ( 𝑣 ∈ 𝒫 𝑢 ∧ ∃ 𝑏 ∈ ℝ+ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) ) |
139 |
|
n0 |
⊢ ( ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ↔ ∃ 𝑣 𝑣 ∈ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ) |
140 |
|
df-rex |
⊢ ( ∃ 𝑣 ∈ 𝒫 𝑢 ∃ 𝑏 ∈ ℝ+ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ↔ ∃ 𝑣 ( 𝑣 ∈ 𝒫 𝑢 ∧ ∃ 𝑏 ∈ ℝ+ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) ) |
141 |
138 139 140
|
3bitr4i |
⊢ ( ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ↔ ∃ 𝑣 ∈ 𝒫 𝑢 ∃ 𝑏 ∈ ℝ+ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) |
142 |
141
|
biimpi |
⊢ ( ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ → ∃ 𝑣 ∈ 𝒫 𝑢 ∃ 𝑏 ∈ ℝ+ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) |
143 |
142
|
ad2antll |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → ∃ 𝑣 ∈ 𝒫 𝑢 ∃ 𝑏 ∈ ℝ+ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) |
144 |
131 143
|
r19.29vva |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ) |
145 |
81
|
adantr |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → 𝑋 ≠ ∅ ) |
146 |
43
|
adantr |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) |
147 |
|
metuel |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ∈ ( metUnif ‘ 𝐷 ) ↔ ( ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ) ) ) |
148 |
145 146 147
|
syl2anc |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → ( ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ∈ ( metUnif ‘ 𝐷 ) ↔ ( ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ) ) ) |
149 |
96 144 148
|
mpbir2and |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ∈ ( metUnif ‘ 𝐷 ) ) |
150 |
|
indir |
⊢ ( ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ∩ ( 𝐴 × 𝐴 ) ) = ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) ∪ ( ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) |
151 |
|
disjdifr |
⊢ ( ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ∩ ( 𝐴 × 𝐴 ) ) = ∅ |
152 |
151
|
uneq2i |
⊢ ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) ∪ ( ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) = ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) ∪ ∅ ) |
153 |
|
un0 |
⊢ ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) ∪ ∅ ) = ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) |
154 |
150 152 153
|
3eqtri |
⊢ ( ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ∩ ( 𝐴 × 𝐴 ) ) = ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) |
155 |
|
df-ss |
⊢ ( 𝑢 ⊆ ( 𝐴 × 𝐴 ) ↔ ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) = 𝑢 ) |
156 |
90 155
|
sylib |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) = 𝑢 ) |
157 |
154 156
|
eqtr2id |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → 𝑢 = ( ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ∩ ( 𝐴 × 𝐴 ) ) ) |
158 |
|
ineq1 |
⊢ ( 𝑣 = ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) → ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) = ( ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ∩ ( 𝐴 × 𝐴 ) ) ) |
159 |
158
|
rspceeqv |
⊢ ( ( ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ∈ ( metUnif ‘ 𝐷 ) ∧ 𝑢 = ( ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ∩ ( 𝐴 × 𝐴 ) ) ) → ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) |
160 |
149 157 159
|
syl2anc |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) |
161 |
88 160
|
impbida |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ↔ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ) |
162 |
|
eqid |
⊢ ( 𝑣 ∈ ( metUnif ‘ 𝐷 ) ↦ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) = ( 𝑣 ∈ ( metUnif ‘ 𝐷 ) ↦ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) |
163 |
162
|
elrnmpt |
⊢ ( 𝑢 ∈ V → ( 𝑢 ∈ ran ( 𝑣 ∈ ( metUnif ‘ 𝐷 ) ↦ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ↔ ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
164 |
163
|
elv |
⊢ ( 𝑢 ∈ ran ( 𝑣 ∈ ( metUnif ‘ 𝐷 ) ↦ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ↔ ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) |
165 |
|
pweq |
⊢ ( 𝑣 = 𝑢 → 𝒫 𝑣 = 𝒫 𝑢 ) |
166 |
165
|
ineq2d |
⊢ ( 𝑣 = 𝑢 → ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑣 ) = ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ) |
167 |
166
|
neeq1d |
⊢ ( 𝑣 = 𝑢 → ( ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑣 ) ≠ ∅ ↔ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) |
168 |
167
|
elrab |
⊢ ( 𝑢 ∈ { 𝑣 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∣ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑣 ) ≠ ∅ } ↔ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) |
169 |
161 164 168
|
3bitr4g |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑢 ∈ ran ( 𝑣 ∈ ( metUnif ‘ 𝐷 ) ↦ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ↔ 𝑢 ∈ { 𝑣 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∣ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑣 ) ≠ ∅ } ) ) |
170 |
169
|
eqrdv |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ran ( 𝑣 ∈ ( metUnif ‘ 𝐷 ) ↦ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) = { 𝑣 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∣ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑣 ) ≠ ∅ } ) |
171 |
18 170
|
eqtrd |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( metUnif ‘ 𝐷 ) ↾t ( 𝐴 × 𝐴 ) ) = { 𝑣 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∣ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑣 ) ≠ ∅ } ) |
172 |
11 13 171
|
3eqtr4rd |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( metUnif ‘ 𝐷 ) ↾t ( 𝐴 × 𝐴 ) ) = ( metUnif ‘ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) ) ) |