Metamath Proof Explorer


Theorem restopnssd

Description: A topology restricted to an open set is a subset of the original topology. (Contributed by Glauco Siliprandi, 21-Dec-2024)

Ref Expression
Hypotheses restopnssd.1 ( 𝜑𝐽 ∈ Top )
restopnssd.2 ( 𝜑𝐴𝐽 )
Assertion restopnssd ( 𝜑 → ( 𝐽t 𝐴 ) ⊆ 𝐽 )

Proof

Step Hyp Ref Expression
1 restopnssd.1 ( 𝜑𝐽 ∈ Top )
2 restopnssd.2 ( 𝜑𝐴𝐽 )
3 simpr ( ( 𝜑𝑥 ∈ ( 𝐽t 𝐴 ) ) → 𝑥 ∈ ( 𝐽t 𝐴 ) )
4 1 adantr ( ( 𝜑𝑥 ∈ ( 𝐽t 𝐴 ) ) → 𝐽 ∈ Top )
5 2 adantr ( ( 𝜑𝑥 ∈ ( 𝐽t 𝐴 ) ) → 𝐴𝐽 )
6 restopn2 ( ( 𝐽 ∈ Top ∧ 𝐴𝐽 ) → ( 𝑥 ∈ ( 𝐽t 𝐴 ) ↔ ( 𝑥𝐽𝑥𝐴 ) ) )
7 4 5 6 syl2anc ( ( 𝜑𝑥 ∈ ( 𝐽t 𝐴 ) ) → ( 𝑥 ∈ ( 𝐽t 𝐴 ) ↔ ( 𝑥𝐽𝑥𝐴 ) ) )
8 3 7 mpbid ( ( 𝜑𝑥 ∈ ( 𝐽t 𝐴 ) ) → ( 𝑥𝐽𝑥𝐴 ) )
9 8 simpld ( ( 𝜑𝑥 ∈ ( 𝐽t 𝐴 ) ) → 𝑥𝐽 )
10 9 ssd ( 𝜑 → ( 𝐽t 𝐴 ) ⊆ 𝐽 )