| Step |
Hyp |
Ref |
Expression |
| 1 |
|
restcls.1 |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
|
restcls.2 |
⊢ 𝐾 = ( 𝐽 ↾t 𝑌 ) |
| 3 |
1
|
toptopon |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 4 |
|
resttopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝑌 ) ∈ ( TopOn ‘ 𝑌 ) ) |
| 5 |
3 4
|
sylanb |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝑌 ) ∈ ( TopOn ‘ 𝑌 ) ) |
| 6 |
2 5
|
eqeltrid |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 7 |
|
topontop |
⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝐾 ∈ Top ) |
| 8 |
6 7
|
syl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → 𝐾 ∈ Top ) |
| 9 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
| 10 |
9
|
isperf |
⊢ ( 𝐾 ∈ Perf ↔ ( 𝐾 ∈ Top ∧ ( ( limPt ‘ 𝐾 ) ‘ ∪ 𝐾 ) = ∪ 𝐾 ) ) |
| 11 |
10
|
baib |
⊢ ( 𝐾 ∈ Top → ( 𝐾 ∈ Perf ↔ ( ( limPt ‘ 𝐾 ) ‘ ∪ 𝐾 ) = ∪ 𝐾 ) ) |
| 12 |
8 11
|
syl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐾 ∈ Perf ↔ ( ( limPt ‘ 𝐾 ) ‘ ∪ 𝐾 ) = ∪ 𝐾 ) ) |
| 13 |
|
sseqin2 |
⊢ ( 𝑌 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑌 ) ↔ ( ( ( limPt ‘ 𝐽 ) ‘ 𝑌 ) ∩ 𝑌 ) = 𝑌 ) |
| 14 |
|
ssid |
⊢ 𝑌 ⊆ 𝑌 |
| 15 |
1 2
|
restlp |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑌 ⊆ 𝑌 ) → ( ( limPt ‘ 𝐾 ) ‘ 𝑌 ) = ( ( ( limPt ‘ 𝐽 ) ‘ 𝑌 ) ∩ 𝑌 ) ) |
| 16 |
14 15
|
mp3an3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → ( ( limPt ‘ 𝐾 ) ‘ 𝑌 ) = ( ( ( limPt ‘ 𝐽 ) ‘ 𝑌 ) ∩ 𝑌 ) ) |
| 17 |
|
toponuni |
⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝑌 = ∪ 𝐾 ) |
| 18 |
6 17
|
syl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → 𝑌 = ∪ 𝐾 ) |
| 19 |
18
|
fveq2d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → ( ( limPt ‘ 𝐾 ) ‘ 𝑌 ) = ( ( limPt ‘ 𝐾 ) ‘ ∪ 𝐾 ) ) |
| 20 |
16 19
|
eqtr3d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → ( ( ( limPt ‘ 𝐽 ) ‘ 𝑌 ) ∩ 𝑌 ) = ( ( limPt ‘ 𝐾 ) ‘ ∪ 𝐾 ) ) |
| 21 |
20 18
|
eqeq12d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → ( ( ( ( limPt ‘ 𝐽 ) ‘ 𝑌 ) ∩ 𝑌 ) = 𝑌 ↔ ( ( limPt ‘ 𝐾 ) ‘ ∪ 𝐾 ) = ∪ 𝐾 ) ) |
| 22 |
13 21
|
bitrid |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑌 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑌 ) ↔ ( ( limPt ‘ 𝐾 ) ‘ ∪ 𝐾 ) = ∪ 𝐾 ) ) |
| 23 |
12 22
|
bitr4d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐾 ∈ Perf ↔ 𝑌 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑌 ) ) ) |