| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sn0top | ⊢ { ∅ }  ∈  Top | 
						
							| 2 |  | elrest | ⊢ ( ( { ∅ }  ∈  Top  ∧  𝐴  ∈  𝑉 )  →  ( 𝑥  ∈  ( { ∅ }  ↾t  𝐴 )  ↔  ∃ 𝑦  ∈  { ∅ } 𝑥  =  ( 𝑦  ∩  𝐴 ) ) ) | 
						
							| 3 | 1 2 | mpan | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝑥  ∈  ( { ∅ }  ↾t  𝐴 )  ↔  ∃ 𝑦  ∈  { ∅ } 𝑥  =  ( 𝑦  ∩  𝐴 ) ) ) | 
						
							| 4 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 5 |  | ineq1 | ⊢ ( 𝑦  =  ∅  →  ( 𝑦  ∩  𝐴 )  =  ( ∅  ∩  𝐴 ) ) | 
						
							| 6 |  | 0in | ⊢ ( ∅  ∩  𝐴 )  =  ∅ | 
						
							| 7 | 5 6 | eqtrdi | ⊢ ( 𝑦  =  ∅  →  ( 𝑦  ∩  𝐴 )  =  ∅ ) | 
						
							| 8 | 7 | eqeq2d | ⊢ ( 𝑦  =  ∅  →  ( 𝑥  =  ( 𝑦  ∩  𝐴 )  ↔  𝑥  =  ∅ ) ) | 
						
							| 9 | 4 8 | rexsn | ⊢ ( ∃ 𝑦  ∈  { ∅ } 𝑥  =  ( 𝑦  ∩  𝐴 )  ↔  𝑥  =  ∅ ) | 
						
							| 10 |  | velsn | ⊢ ( 𝑥  ∈  { ∅ }  ↔  𝑥  =  ∅ ) | 
						
							| 11 | 9 10 | bitr4i | ⊢ ( ∃ 𝑦  ∈  { ∅ } 𝑥  =  ( 𝑦  ∩  𝐴 )  ↔  𝑥  ∈  { ∅ } ) | 
						
							| 12 | 3 11 | bitrdi | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝑥  ∈  ( { ∅ }  ↾t  𝐴 )  ↔  𝑥  ∈  { ∅ } ) ) | 
						
							| 13 | 12 | eqrdv | ⊢ ( 𝐴  ∈  𝑉  →  ( { ∅ }  ↾t  𝐴 )  =  { ∅ } ) |