Description: The subspace topology induced by a singleton. (Contributed by FL, 5-Jan-2009) (Revised by Mario Carneiro, 16-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | restsn2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐽 ↾t { 𝐴 } ) = 𝒫 { 𝐴 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi | ⊢ ( 𝐴 ∈ 𝑋 → { 𝐴 } ⊆ 𝑋 ) | |
2 | resttopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ { 𝐴 } ⊆ 𝑋 ) → ( 𝐽 ↾t { 𝐴 } ) ∈ ( TopOn ‘ { 𝐴 } ) ) | |
3 | 1 2 | sylan2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐽 ↾t { 𝐴 } ) ∈ ( TopOn ‘ { 𝐴 } ) ) |
4 | topsn | ⊢ ( ( 𝐽 ↾t { 𝐴 } ) ∈ ( TopOn ‘ { 𝐴 } ) → ( 𝐽 ↾t { 𝐴 } ) = 𝒫 { 𝐴 } ) | |
5 | 3 4 | syl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐽 ↾t { 𝐴 } ) = 𝒫 { 𝐴 } ) |