Metamath Proof Explorer


Theorem restsn2

Description: The subspace topology induced by a singleton. (Contributed by FL, 5-Jan-2009) (Revised by Mario Carneiro, 16-Sep-2015)

Ref Expression
Assertion restsn2 ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴𝑋 ) → ( 𝐽t { 𝐴 } ) = 𝒫 { 𝐴 } )

Proof

Step Hyp Ref Expression
1 snssi ( 𝐴𝑋 → { 𝐴 } ⊆ 𝑋 )
2 resttopon ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ { 𝐴 } ⊆ 𝑋 ) → ( 𝐽t { 𝐴 } ) ∈ ( TopOn ‘ { 𝐴 } ) )
3 1 2 sylan2 ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴𝑋 ) → ( 𝐽t { 𝐴 } ) ∈ ( TopOn ‘ { 𝐴 } ) )
4 topsn ( ( 𝐽t { 𝐴 } ) ∈ ( TopOn ‘ { 𝐴 } ) → ( 𝐽t { 𝐴 } ) = 𝒫 { 𝐴 } )
5 3 4 syl ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴𝑋 ) → ( 𝐽t { 𝐴 } ) = 𝒫 { 𝐴 } )