Metamath Proof Explorer


Theorem restsspw

Description: The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Assertion restsspw ( 𝐽t 𝐴 ) ⊆ 𝒫 𝐴

Proof

Step Hyp Ref Expression
1 n0i ( 𝑥 ∈ ( 𝐽t 𝐴 ) → ¬ ( 𝐽t 𝐴 ) = ∅ )
2 restfn t Fn ( V × V )
3 fndm ( ↾t Fn ( V × V ) → dom ↾t = ( V × V ) )
4 2 3 ax-mp dom ↾t = ( V × V )
5 4 ndmov ( ¬ ( 𝐽 ∈ V ∧ 𝐴 ∈ V ) → ( 𝐽t 𝐴 ) = ∅ )
6 1 5 nsyl2 ( 𝑥 ∈ ( 𝐽t 𝐴 ) → ( 𝐽 ∈ V ∧ 𝐴 ∈ V ) )
7 elrest ( ( 𝐽 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑥 ∈ ( 𝐽t 𝐴 ) ↔ ∃ 𝑦𝐽 𝑥 = ( 𝑦𝐴 ) ) )
8 6 7 syl ( 𝑥 ∈ ( 𝐽t 𝐴 ) → ( 𝑥 ∈ ( 𝐽t 𝐴 ) ↔ ∃ 𝑦𝐽 𝑥 = ( 𝑦𝐴 ) ) )
9 8 ibi ( 𝑥 ∈ ( 𝐽t 𝐴 ) → ∃ 𝑦𝐽 𝑥 = ( 𝑦𝐴 ) )
10 inss2 ( 𝑦𝐴 ) ⊆ 𝐴
11 sseq1 ( 𝑥 = ( 𝑦𝐴 ) → ( 𝑥𝐴 ↔ ( 𝑦𝐴 ) ⊆ 𝐴 ) )
12 10 11 mpbiri ( 𝑥 = ( 𝑦𝐴 ) → 𝑥𝐴 )
13 12 rexlimivw ( ∃ 𝑦𝐽 𝑥 = ( 𝑦𝐴 ) → 𝑥𝐴 )
14 9 13 syl ( 𝑥 ∈ ( 𝐽t 𝐴 ) → 𝑥𝐴 )
15 velpw ( 𝑥 ∈ 𝒫 𝐴𝑥𝐴 )
16 14 15 sylibr ( 𝑥 ∈ ( 𝐽t 𝐴 ) → 𝑥 ∈ 𝒫 𝐴 )
17 16 ssriv ( 𝐽t 𝐴 ) ⊆ 𝒫 𝐴