Step |
Hyp |
Ref |
Expression |
1 |
|
n0i |
⊢ ( 𝑥 ∈ ( 𝐽 ↾t 𝐴 ) → ¬ ( 𝐽 ↾t 𝐴 ) = ∅ ) |
2 |
|
restfn |
⊢ ↾t Fn ( V × V ) |
3 |
|
fndm |
⊢ ( ↾t Fn ( V × V ) → dom ↾t = ( V × V ) ) |
4 |
2 3
|
ax-mp |
⊢ dom ↾t = ( V × V ) |
5 |
4
|
ndmov |
⊢ ( ¬ ( 𝐽 ∈ V ∧ 𝐴 ∈ V ) → ( 𝐽 ↾t 𝐴 ) = ∅ ) |
6 |
1 5
|
nsyl2 |
⊢ ( 𝑥 ∈ ( 𝐽 ↾t 𝐴 ) → ( 𝐽 ∈ V ∧ 𝐴 ∈ V ) ) |
7 |
|
elrest |
⊢ ( ( 𝐽 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑥 ∈ ( 𝐽 ↾t 𝐴 ) ↔ ∃ 𝑦 ∈ 𝐽 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ) |
8 |
6 7
|
syl |
⊢ ( 𝑥 ∈ ( 𝐽 ↾t 𝐴 ) → ( 𝑥 ∈ ( 𝐽 ↾t 𝐴 ) ↔ ∃ 𝑦 ∈ 𝐽 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ) |
9 |
8
|
ibi |
⊢ ( 𝑥 ∈ ( 𝐽 ↾t 𝐴 ) → ∃ 𝑦 ∈ 𝐽 𝑥 = ( 𝑦 ∩ 𝐴 ) ) |
10 |
|
inss2 |
⊢ ( 𝑦 ∩ 𝐴 ) ⊆ 𝐴 |
11 |
|
sseq1 |
⊢ ( 𝑥 = ( 𝑦 ∩ 𝐴 ) → ( 𝑥 ⊆ 𝐴 ↔ ( 𝑦 ∩ 𝐴 ) ⊆ 𝐴 ) ) |
12 |
10 11
|
mpbiri |
⊢ ( 𝑥 = ( 𝑦 ∩ 𝐴 ) → 𝑥 ⊆ 𝐴 ) |
13 |
12
|
rexlimivw |
⊢ ( ∃ 𝑦 ∈ 𝐽 𝑥 = ( 𝑦 ∩ 𝐴 ) → 𝑥 ⊆ 𝐴 ) |
14 |
9 13
|
syl |
⊢ ( 𝑥 ∈ ( 𝐽 ↾t 𝐴 ) → 𝑥 ⊆ 𝐴 ) |
15 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) |
16 |
14 15
|
sylibr |
⊢ ( 𝑥 ∈ ( 𝐽 ↾t 𝐴 ) → 𝑥 ∈ 𝒫 𝐴 ) |
17 |
16
|
ssriv |
⊢ ( 𝐽 ↾t 𝐴 ) ⊆ 𝒫 𝐴 |