| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgrest |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) → ( topGen ‘ ( 𝐽 ↾t 𝐴 ) ) = ( ( topGen ‘ 𝐽 ) ↾t 𝐴 ) ) |
| 2 |
|
tgtop |
⊢ ( 𝐽 ∈ Top → ( topGen ‘ 𝐽 ) = 𝐽 ) |
| 3 |
2
|
adantr |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) → ( topGen ‘ 𝐽 ) = 𝐽 ) |
| 4 |
3
|
oveq1d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) → ( ( topGen ‘ 𝐽 ) ↾t 𝐴 ) = ( 𝐽 ↾t 𝐴 ) ) |
| 5 |
1 4
|
eqtrd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) → ( topGen ‘ ( 𝐽 ↾t 𝐴 ) ) = ( 𝐽 ↾t 𝐴 ) ) |
| 6 |
|
topbas |
⊢ ( 𝐽 ∈ Top → 𝐽 ∈ TopBases ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) → 𝐽 ∈ TopBases ) |
| 8 |
|
restbas |
⊢ ( 𝐽 ∈ TopBases → ( 𝐽 ↾t 𝐴 ) ∈ TopBases ) |
| 9 |
|
tgcl |
⊢ ( ( 𝐽 ↾t 𝐴 ) ∈ TopBases → ( topGen ‘ ( 𝐽 ↾t 𝐴 ) ) ∈ Top ) |
| 10 |
7 8 9
|
3syl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) → ( topGen ‘ ( 𝐽 ↾t 𝐴 ) ) ∈ Top ) |
| 11 |
5 10
|
eqeltrrd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) → ( 𝐽 ↾t 𝐴 ) ∈ Top ) |