| Step | Hyp | Ref | Expression | 
						
							| 1 |  | topontop | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝐽  ∈  Top ) | 
						
							| 2 |  | id | ⊢ ( 𝐴  ⊆  𝑋  →  𝐴  ⊆  𝑋 ) | 
						
							| 3 |  | toponmax | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝑋  ∈  𝐽 ) | 
						
							| 4 |  | ssexg | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝑋  ∈  𝐽 )  →  𝐴  ∈  V ) | 
						
							| 5 | 2 3 4 | syl2anr | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋 )  →  𝐴  ∈  V ) | 
						
							| 6 |  | resttop | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ∈  V )  →  ( 𝐽  ↾t  𝐴 )  ∈  Top ) | 
						
							| 7 | 1 5 6 | syl2an2r | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋 )  →  ( 𝐽  ↾t  𝐴 )  ∈  Top ) | 
						
							| 8 |  | simpr | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋 )  →  𝐴  ⊆  𝑋 ) | 
						
							| 9 |  | sseqin2 | ⊢ ( 𝐴  ⊆  𝑋  ↔  ( 𝑋  ∩  𝐴 )  =  𝐴 ) | 
						
							| 10 | 8 9 | sylib | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋 )  →  ( 𝑋  ∩  𝐴 )  =  𝐴 ) | 
						
							| 11 |  | simpl | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋 )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 12 | 3 | adantr | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋 )  →  𝑋  ∈  𝐽 ) | 
						
							| 13 |  | elrestr | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ∈  V  ∧  𝑋  ∈  𝐽 )  →  ( 𝑋  ∩  𝐴 )  ∈  ( 𝐽  ↾t  𝐴 ) ) | 
						
							| 14 | 11 5 12 13 | syl3anc | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋 )  →  ( 𝑋  ∩  𝐴 )  ∈  ( 𝐽  ↾t  𝐴 ) ) | 
						
							| 15 | 10 14 | eqeltrrd | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋 )  →  𝐴  ∈  ( 𝐽  ↾t  𝐴 ) ) | 
						
							| 16 |  | elssuni | ⊢ ( 𝐴  ∈  ( 𝐽  ↾t  𝐴 )  →  𝐴  ⊆  ∪  ( 𝐽  ↾t  𝐴 ) ) | 
						
							| 17 | 15 16 | syl | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋 )  →  𝐴  ⊆  ∪  ( 𝐽  ↾t  𝐴 ) ) | 
						
							| 18 |  | restval | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ∈  V )  →  ( 𝐽  ↾t  𝐴 )  =  ran  ( 𝑥  ∈  𝐽  ↦  ( 𝑥  ∩  𝐴 ) ) ) | 
						
							| 19 | 5 18 | syldan | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋 )  →  ( 𝐽  ↾t  𝐴 )  =  ran  ( 𝑥  ∈  𝐽  ↦  ( 𝑥  ∩  𝐴 ) ) ) | 
						
							| 20 |  | inss2 | ⊢ ( 𝑥  ∩  𝐴 )  ⊆  𝐴 | 
						
							| 21 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 22 | 21 | inex1 | ⊢ ( 𝑥  ∩  𝐴 )  ∈  V | 
						
							| 23 | 22 | elpw | ⊢ ( ( 𝑥  ∩  𝐴 )  ∈  𝒫  𝐴  ↔  ( 𝑥  ∩  𝐴 )  ⊆  𝐴 ) | 
						
							| 24 | 20 23 | mpbir | ⊢ ( 𝑥  ∩  𝐴 )  ∈  𝒫  𝐴 | 
						
							| 25 | 24 | a1i | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋 )  ∧  𝑥  ∈  𝐽 )  →  ( 𝑥  ∩  𝐴 )  ∈  𝒫  𝐴 ) | 
						
							| 26 | 25 | fmpttd | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋 )  →  ( 𝑥  ∈  𝐽  ↦  ( 𝑥  ∩  𝐴 ) ) : 𝐽 ⟶ 𝒫  𝐴 ) | 
						
							| 27 | 26 | frnd | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋 )  →  ran  ( 𝑥  ∈  𝐽  ↦  ( 𝑥  ∩  𝐴 ) )  ⊆  𝒫  𝐴 ) | 
						
							| 28 | 19 27 | eqsstrd | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋 )  →  ( 𝐽  ↾t  𝐴 )  ⊆  𝒫  𝐴 ) | 
						
							| 29 |  | sspwuni | ⊢ ( ( 𝐽  ↾t  𝐴 )  ⊆  𝒫  𝐴  ↔  ∪  ( 𝐽  ↾t  𝐴 )  ⊆  𝐴 ) | 
						
							| 30 | 28 29 | sylib | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋 )  →  ∪  ( 𝐽  ↾t  𝐴 )  ⊆  𝐴 ) | 
						
							| 31 | 17 30 | eqssd | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋 )  →  𝐴  =  ∪  ( 𝐽  ↾t  𝐴 ) ) | 
						
							| 32 |  | istopon | ⊢ ( ( 𝐽  ↾t  𝐴 )  ∈  ( TopOn ‘ 𝐴 )  ↔  ( ( 𝐽  ↾t  𝐴 )  ∈  Top  ∧  𝐴  =  ∪  ( 𝐽  ↾t  𝐴 ) ) ) | 
						
							| 33 | 7 31 32 | sylanbrc | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋 )  →  ( 𝐽  ↾t  𝐴 )  ∈  ( TopOn ‘ 𝐴 ) ) |