Metamath Proof Explorer


Theorem resttopon2

Description: The underlying set of a subspace topology. (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Assertion resttopon2 ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴𝑉 ) → ( 𝐽t 𝐴 ) ∈ ( TopOn ‘ ( 𝐴𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 topontop ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top )
2 resttop ( ( 𝐽 ∈ Top ∧ 𝐴𝑉 ) → ( 𝐽t 𝐴 ) ∈ Top )
3 1 2 sylan ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴𝑉 ) → ( 𝐽t 𝐴 ) ∈ Top )
4 toponuni ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = 𝐽 )
5 4 ineq2d ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐴𝑋 ) = ( 𝐴 𝐽 ) )
6 5 adantr ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴𝑉 ) → ( 𝐴𝑋 ) = ( 𝐴 𝐽 ) )
7 eqid 𝐽 = 𝐽
8 7 restuni2 ( ( 𝐽 ∈ Top ∧ 𝐴𝑉 ) → ( 𝐴 𝐽 ) = ( 𝐽t 𝐴 ) )
9 1 8 sylan ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴𝑉 ) → ( 𝐴 𝐽 ) = ( 𝐽t 𝐴 ) )
10 6 9 eqtrd ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴𝑉 ) → ( 𝐴𝑋 ) = ( 𝐽t 𝐴 ) )
11 istopon ( ( 𝐽t 𝐴 ) ∈ ( TopOn ‘ ( 𝐴𝑋 ) ) ↔ ( ( 𝐽t 𝐴 ) ∈ Top ∧ ( 𝐴𝑋 ) = ( 𝐽t 𝐴 ) ) )
12 3 10 11 sylanbrc ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴𝑉 ) → ( 𝐽t 𝐴 ) ∈ ( TopOn ‘ ( 𝐴𝑋 ) ) )