Step |
Hyp |
Ref |
Expression |
1 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
2 |
|
resttop |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) → ( 𝐽 ↾t 𝐴 ) ∈ Top ) |
3 |
1 2
|
sylan |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑉 ) → ( 𝐽 ↾t 𝐴 ) ∈ Top ) |
4 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
5 |
4
|
ineq2d |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐴 ∩ 𝑋 ) = ( 𝐴 ∩ ∪ 𝐽 ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∩ 𝑋 ) = ( 𝐴 ∩ ∪ 𝐽 ) ) |
7 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
8 |
7
|
restuni2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∩ ∪ 𝐽 ) = ∪ ( 𝐽 ↾t 𝐴 ) ) |
9 |
1 8
|
sylan |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∩ ∪ 𝐽 ) = ∪ ( 𝐽 ↾t 𝐴 ) ) |
10 |
6 9
|
eqtrd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∩ 𝑋 ) = ∪ ( 𝐽 ↾t 𝐴 ) ) |
11 |
|
istopon |
⊢ ( ( 𝐽 ↾t 𝐴 ) ∈ ( TopOn ‘ ( 𝐴 ∩ 𝑋 ) ) ↔ ( ( 𝐽 ↾t 𝐴 ) ∈ Top ∧ ( 𝐴 ∩ 𝑋 ) = ∪ ( 𝐽 ↾t 𝐴 ) ) ) |
12 |
3 10 11
|
sylanbrc |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑉 ) → ( 𝐽 ↾t 𝐴 ) ∈ ( TopOn ‘ ( 𝐴 ∩ 𝑋 ) ) ) |