| Step |
Hyp |
Ref |
Expression |
| 1 |
|
restuni3.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 2 |
|
restuni3.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
| 3 |
|
eluni2 |
⊢ ( 𝑥 ∈ ∪ ( 𝐴 ↾t 𝐵 ) ↔ ∃ 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) 𝑥 ∈ 𝑦 ) |
| 4 |
3
|
biimpi |
⊢ ( 𝑥 ∈ ∪ ( 𝐴 ↾t 𝐵 ) → ∃ 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) 𝑥 ∈ 𝑦 ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ( 𝐴 ↾t 𝐵 ) ) → ∃ 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) 𝑥 ∈ 𝑦 ) |
| 6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) ) → 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) ) |
| 7 |
|
elrest |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) ↔ ∃ 𝑧 ∈ 𝐴 𝑦 = ( 𝑧 ∩ 𝐵 ) ) ) |
| 8 |
1 2 7
|
syl2anc |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) ↔ ∃ 𝑧 ∈ 𝐴 𝑦 = ( 𝑧 ∩ 𝐵 ) ) ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) ) → ( 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) ↔ ∃ 𝑧 ∈ 𝐴 𝑦 = ( 𝑧 ∩ 𝐵 ) ) ) |
| 10 |
6 9
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) ) → ∃ 𝑧 ∈ 𝐴 𝑦 = ( 𝑧 ∩ 𝐵 ) ) |
| 11 |
10
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) ∧ 𝑥 ∈ 𝑦 ) → ∃ 𝑧 ∈ 𝐴 𝑦 = ( 𝑧 ∩ 𝐵 ) ) |
| 12 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 = ( 𝑧 ∩ 𝐵 ) ) → 𝑥 ∈ 𝑦 ) |
| 13 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 = ( 𝑧 ∩ 𝐵 ) ) → 𝑦 = ( 𝑧 ∩ 𝐵 ) ) |
| 14 |
12 13
|
eleqtrd |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 = ( 𝑧 ∩ 𝐵 ) ) → 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) ) |
| 15 |
14
|
ex |
⊢ ( 𝑥 ∈ 𝑦 → ( 𝑦 = ( 𝑧 ∩ 𝐵 ) → 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) ) ) |
| 16 |
15
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) ∧ 𝑥 ∈ 𝑦 ) → ( 𝑦 = ( 𝑧 ∩ 𝐵 ) → 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) ) ) |
| 17 |
16
|
reximdv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) ∧ 𝑥 ∈ 𝑦 ) → ( ∃ 𝑧 ∈ 𝐴 𝑦 = ( 𝑧 ∩ 𝐵 ) → ∃ 𝑧 ∈ 𝐴 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) ) ) |
| 18 |
11 17
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) ∧ 𝑥 ∈ 𝑦 ) → ∃ 𝑧 ∈ 𝐴 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) ) |
| 19 |
18
|
3exp |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) → ( 𝑥 ∈ 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) ) ) ) |
| 20 |
19
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) 𝑥 ∈ 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) ) ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ( 𝐴 ↾t 𝐵 ) ) → ( ∃ 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) 𝑥 ∈ 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) ) ) |
| 22 |
5 21
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ( 𝐴 ↾t 𝐵 ) ) → ∃ 𝑧 ∈ 𝐴 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) ) |
| 23 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) → 𝑥 ∈ 𝑧 ) |
| 24 |
23
|
adantl |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) ) → 𝑥 ∈ 𝑧 ) |
| 25 |
|
simpl |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) ) → 𝑧 ∈ 𝐴 ) |
| 26 |
|
elunii |
⊢ ( ( 𝑥 ∈ 𝑧 ∧ 𝑧 ∈ 𝐴 ) → 𝑥 ∈ ∪ 𝐴 ) |
| 27 |
24 25 26
|
syl2anc |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) ) → 𝑥 ∈ ∪ 𝐴 ) |
| 28 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 29 |
28
|
adantl |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
| 30 |
27 29
|
elind |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) ) → 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) |
| 31 |
30
|
ex |
⊢ ( 𝑧 ∈ 𝐴 → ( 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) → 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) ) |
| 32 |
31
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∪ ( 𝐴 ↾t 𝐵 ) ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) → 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) ) |
| 33 |
32
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ( 𝐴 ↾t 𝐵 ) ) → ( ∃ 𝑧 ∈ 𝐴 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) → 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) ) |
| 34 |
22 33
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ( 𝐴 ↾t 𝐵 ) ) → 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) |
| 35 |
34
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ∪ ( 𝐴 ↾t 𝐵 ) 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) |
| 36 |
|
dfss3 |
⊢ ( ∪ ( 𝐴 ↾t 𝐵 ) ⊆ ( ∪ 𝐴 ∩ 𝐵 ) ↔ ∀ 𝑥 ∈ ∪ ( 𝐴 ↾t 𝐵 ) 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) |
| 37 |
35 36
|
sylibr |
⊢ ( 𝜑 → ∪ ( 𝐴 ↾t 𝐵 ) ⊆ ( ∪ 𝐴 ∩ 𝐵 ) ) |
| 38 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) → 𝑥 ∈ ∪ 𝐴 ) |
| 39 |
|
eluni2 |
⊢ ( 𝑥 ∈ ∪ 𝐴 ↔ ∃ 𝑧 ∈ 𝐴 𝑥 ∈ 𝑧 ) |
| 40 |
38 39
|
sylib |
⊢ ( 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) → ∃ 𝑧 ∈ 𝐴 𝑥 ∈ 𝑧 ) |
| 41 |
40
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) → ∃ 𝑧 ∈ 𝐴 𝑥 ∈ 𝑧 ) |
| 42 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝐴 ∈ 𝑉 ) |
| 43 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝐵 ∈ 𝑊 ) |
| 44 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) |
| 45 |
|
eqid |
⊢ ( 𝑧 ∩ 𝐵 ) = ( 𝑧 ∩ 𝐵 ) |
| 46 |
42 43 44 45
|
elrestd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑧 ∩ 𝐵 ) ∈ ( 𝐴 ↾t 𝐵 ) ) |
| 47 |
46
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ 𝑧 ) → ( 𝑧 ∩ 𝐵 ) ∈ ( 𝐴 ↾t 𝐵 ) ) |
| 48 |
47
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) ∧ 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ 𝑧 ) → ( 𝑧 ∩ 𝐵 ) ∈ ( 𝐴 ↾t 𝐵 ) ) |
| 49 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) ∧ 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ 𝑧 ) → 𝑥 ∈ 𝑧 ) |
| 50 |
|
simp1r |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) ∧ 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ 𝑧 ) → 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) |
| 51 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 52 |
50 51
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) ∧ 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ 𝑧 ) → 𝑥 ∈ 𝐵 ) |
| 53 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝑧 ) |
| 54 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 55 |
53 54
|
elind |
⊢ ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) ) |
| 56 |
49 52 55
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) ∧ 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ 𝑧 ) → 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) ) |
| 57 |
|
eleq2 |
⊢ ( 𝑦 = ( 𝑧 ∩ 𝐵 ) → ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) ) ) |
| 58 |
57
|
rspcev |
⊢ ( ( ( 𝑧 ∩ 𝐵 ) ∈ ( 𝐴 ↾t 𝐵 ) ∧ 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) ) → ∃ 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) 𝑥 ∈ 𝑦 ) |
| 59 |
48 56 58
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) ∧ 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ 𝑧 ) → ∃ 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) 𝑥 ∈ 𝑦 ) |
| 60 |
59
|
3exp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) → ( 𝑧 ∈ 𝐴 → ( 𝑥 ∈ 𝑧 → ∃ 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) 𝑥 ∈ 𝑦 ) ) ) |
| 61 |
60
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) → ( ∃ 𝑧 ∈ 𝐴 𝑥 ∈ 𝑧 → ∃ 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) 𝑥 ∈ 𝑦 ) ) |
| 62 |
41 61
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) → ∃ 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) 𝑥 ∈ 𝑦 ) |
| 63 |
62 3
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) → 𝑥 ∈ ∪ ( 𝐴 ↾t 𝐵 ) ) |
| 64 |
37 63
|
eqelssd |
⊢ ( 𝜑 → ∪ ( 𝐴 ↾t 𝐵 ) = ( ∪ 𝐴 ∩ 𝐵 ) ) |