Step |
Hyp |
Ref |
Expression |
1 |
|
restuni3.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
restuni3.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
3 |
|
eluni2 |
⊢ ( 𝑥 ∈ ∪ ( 𝐴 ↾t 𝐵 ) ↔ ∃ 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) 𝑥 ∈ 𝑦 ) |
4 |
3
|
biimpi |
⊢ ( 𝑥 ∈ ∪ ( 𝐴 ↾t 𝐵 ) → ∃ 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) 𝑥 ∈ 𝑦 ) |
5 |
4
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ( 𝐴 ↾t 𝐵 ) ) → ∃ 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) 𝑥 ∈ 𝑦 ) |
6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) ) → 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) ) |
7 |
|
elrest |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) ↔ ∃ 𝑧 ∈ 𝐴 𝑦 = ( 𝑧 ∩ 𝐵 ) ) ) |
8 |
1 2 7
|
syl2anc |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) ↔ ∃ 𝑧 ∈ 𝐴 𝑦 = ( 𝑧 ∩ 𝐵 ) ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) ) → ( 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) ↔ ∃ 𝑧 ∈ 𝐴 𝑦 = ( 𝑧 ∩ 𝐵 ) ) ) |
10 |
6 9
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) ) → ∃ 𝑧 ∈ 𝐴 𝑦 = ( 𝑧 ∩ 𝐵 ) ) |
11 |
10
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) ∧ 𝑥 ∈ 𝑦 ) → ∃ 𝑧 ∈ 𝐴 𝑦 = ( 𝑧 ∩ 𝐵 ) ) |
12 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 = ( 𝑧 ∩ 𝐵 ) ) → 𝑥 ∈ 𝑦 ) |
13 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 = ( 𝑧 ∩ 𝐵 ) ) → 𝑦 = ( 𝑧 ∩ 𝐵 ) ) |
14 |
12 13
|
eleqtrd |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 = ( 𝑧 ∩ 𝐵 ) ) → 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) ) |
15 |
14
|
ex |
⊢ ( 𝑥 ∈ 𝑦 → ( 𝑦 = ( 𝑧 ∩ 𝐵 ) → 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) ) ) |
16 |
15
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) ∧ 𝑥 ∈ 𝑦 ) → ( 𝑦 = ( 𝑧 ∩ 𝐵 ) → 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) ) ) |
17 |
16
|
reximdv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) ∧ 𝑥 ∈ 𝑦 ) → ( ∃ 𝑧 ∈ 𝐴 𝑦 = ( 𝑧 ∩ 𝐵 ) → ∃ 𝑧 ∈ 𝐴 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) ) ) |
18 |
11 17
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) ∧ 𝑥 ∈ 𝑦 ) → ∃ 𝑧 ∈ 𝐴 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) ) |
19 |
18
|
3exp |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) → ( 𝑥 ∈ 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) ) ) ) |
20 |
19
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) 𝑥 ∈ 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) ) ) |
21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ( 𝐴 ↾t 𝐵 ) ) → ( ∃ 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) 𝑥 ∈ 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) ) ) |
22 |
5 21
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ( 𝐴 ↾t 𝐵 ) ) → ∃ 𝑧 ∈ 𝐴 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) ) |
23 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) → 𝑥 ∈ 𝑧 ) |
24 |
23
|
adantl |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) ) → 𝑥 ∈ 𝑧 ) |
25 |
|
simpl |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) ) → 𝑧 ∈ 𝐴 ) |
26 |
|
elunii |
⊢ ( ( 𝑥 ∈ 𝑧 ∧ 𝑧 ∈ 𝐴 ) → 𝑥 ∈ ∪ 𝐴 ) |
27 |
24 25 26
|
syl2anc |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) ) → 𝑥 ∈ ∪ 𝐴 ) |
28 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
29 |
28
|
adantl |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
30 |
27 29
|
elind |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) ) → 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) |
31 |
30
|
ex |
⊢ ( 𝑧 ∈ 𝐴 → ( 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) → 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) ) |
32 |
31
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∪ ( 𝐴 ↾t 𝐵 ) ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) → 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) ) |
33 |
32
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ( 𝐴 ↾t 𝐵 ) ) → ( ∃ 𝑧 ∈ 𝐴 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) → 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) ) |
34 |
22 33
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ( 𝐴 ↾t 𝐵 ) ) → 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) |
35 |
34
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ∪ ( 𝐴 ↾t 𝐵 ) 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) |
36 |
|
dfss3 |
⊢ ( ∪ ( 𝐴 ↾t 𝐵 ) ⊆ ( ∪ 𝐴 ∩ 𝐵 ) ↔ ∀ 𝑥 ∈ ∪ ( 𝐴 ↾t 𝐵 ) 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) |
37 |
35 36
|
sylibr |
⊢ ( 𝜑 → ∪ ( 𝐴 ↾t 𝐵 ) ⊆ ( ∪ 𝐴 ∩ 𝐵 ) ) |
38 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) → 𝑥 ∈ ∪ 𝐴 ) |
39 |
|
eluni2 |
⊢ ( 𝑥 ∈ ∪ 𝐴 ↔ ∃ 𝑧 ∈ 𝐴 𝑥 ∈ 𝑧 ) |
40 |
38 39
|
sylib |
⊢ ( 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) → ∃ 𝑧 ∈ 𝐴 𝑥 ∈ 𝑧 ) |
41 |
40
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) → ∃ 𝑧 ∈ 𝐴 𝑥 ∈ 𝑧 ) |
42 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝐴 ∈ 𝑉 ) |
43 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝐵 ∈ 𝑊 ) |
44 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) |
45 |
|
eqid |
⊢ ( 𝑧 ∩ 𝐵 ) = ( 𝑧 ∩ 𝐵 ) |
46 |
42 43 44 45
|
elrestd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑧 ∩ 𝐵 ) ∈ ( 𝐴 ↾t 𝐵 ) ) |
47 |
46
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ 𝑧 ) → ( 𝑧 ∩ 𝐵 ) ∈ ( 𝐴 ↾t 𝐵 ) ) |
48 |
47
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) ∧ 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ 𝑧 ) → ( 𝑧 ∩ 𝐵 ) ∈ ( 𝐴 ↾t 𝐵 ) ) |
49 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) ∧ 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ 𝑧 ) → 𝑥 ∈ 𝑧 ) |
50 |
|
simp1r |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) ∧ 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ 𝑧 ) → 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) |
51 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
52 |
50 51
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) ∧ 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ 𝑧 ) → 𝑥 ∈ 𝐵 ) |
53 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝑧 ) |
54 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
55 |
53 54
|
elind |
⊢ ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) ) |
56 |
49 52 55
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) ∧ 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ 𝑧 ) → 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) ) |
57 |
|
eleq2 |
⊢ ( 𝑦 = ( 𝑧 ∩ 𝐵 ) → ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) ) ) |
58 |
57
|
rspcev |
⊢ ( ( ( 𝑧 ∩ 𝐵 ) ∈ ( 𝐴 ↾t 𝐵 ) ∧ 𝑥 ∈ ( 𝑧 ∩ 𝐵 ) ) → ∃ 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) 𝑥 ∈ 𝑦 ) |
59 |
48 56 58
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) ∧ 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ 𝑧 ) → ∃ 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) 𝑥 ∈ 𝑦 ) |
60 |
59
|
3exp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) → ( 𝑧 ∈ 𝐴 → ( 𝑥 ∈ 𝑧 → ∃ 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) 𝑥 ∈ 𝑦 ) ) ) |
61 |
60
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) → ( ∃ 𝑧 ∈ 𝐴 𝑥 ∈ 𝑧 → ∃ 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) 𝑥 ∈ 𝑦 ) ) |
62 |
41 61
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) → ∃ 𝑦 ∈ ( 𝐴 ↾t 𝐵 ) 𝑥 ∈ 𝑦 ) |
63 |
62 3
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ) → 𝑥 ∈ ∪ ( 𝐴 ↾t 𝐵 ) ) |
64 |
37 63
|
eqelssd |
⊢ ( 𝜑 → ∪ ( 𝐴 ↾t 𝐵 ) = ( ∪ 𝐴 ∩ 𝐵 ) ) |