Description: The underlying set of a subspace induced by the ` |``t ` operator. The result can be applied, for instance, to topologies and sigma-algebras. (Contributed by Glauco Siliprandi, 26-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | restuni4.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| restuni4.2 | ⊢ ( 𝜑 → 𝐵 ⊆ ∪ 𝐴 ) | ||
| Assertion | restuni4 | ⊢ ( 𝜑 → ∪ ( 𝐴 ↾t 𝐵 ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restuni4.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | restuni4.2 | ⊢ ( 𝜑 → 𝐵 ⊆ ∪ 𝐴 ) | |
| 3 | incom | ⊢ ( 𝐵 ∩ ∪ 𝐴 ) = ( ∪ 𝐴 ∩ 𝐵 ) | |
| 4 | 3 | a1i | ⊢ ( 𝜑 → ( 𝐵 ∩ ∪ 𝐴 ) = ( ∪ 𝐴 ∩ 𝐵 ) ) |
| 5 | dfss | ⊢ ( 𝐵 ⊆ ∪ 𝐴 ↔ 𝐵 = ( 𝐵 ∩ ∪ 𝐴 ) ) | |
| 6 | 2 5 | sylib | ⊢ ( 𝜑 → 𝐵 = ( 𝐵 ∩ ∪ 𝐴 ) ) |
| 7 | 1 | uniexd | ⊢ ( 𝜑 → ∪ 𝐴 ∈ V ) |
| 8 | 7 2 | ssexd | ⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 9 | 1 8 | restuni3 | ⊢ ( 𝜑 → ∪ ( 𝐴 ↾t 𝐵 ) = ( ∪ 𝐴 ∩ 𝐵 ) ) |
| 10 | 4 6 9 | 3eqtr4rd | ⊢ ( 𝜑 → ∪ ( 𝐴 ↾t 𝐵 ) = 𝐵 ) |