Metamath Proof Explorer


Theorem restuni4

Description: The underlying set of a subspace induced by the ` |``t ` operator. The result can be applied, for instance, to topologies and sigma-algebras. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses restuni4.1 ( 𝜑𝐴𝑉 )
restuni4.2 ( 𝜑𝐵 𝐴 )
Assertion restuni4 ( 𝜑 ( 𝐴t 𝐵 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 restuni4.1 ( 𝜑𝐴𝑉 )
2 restuni4.2 ( 𝜑𝐵 𝐴 )
3 incom ( 𝐵 𝐴 ) = ( 𝐴𝐵 )
4 3 a1i ( 𝜑 → ( 𝐵 𝐴 ) = ( 𝐴𝐵 ) )
5 dfss ( 𝐵 𝐴𝐵 = ( 𝐵 𝐴 ) )
6 2 5 sylib ( 𝜑𝐵 = ( 𝐵 𝐴 ) )
7 1 uniexd ( 𝜑 𝐴 ∈ V )
8 7 2 ssexd ( 𝜑𝐵 ∈ V )
9 1 8 restuni3 ( 𝜑 ( 𝐴t 𝐵 ) = ( 𝐴𝐵 ) )
10 4 6 9 3eqtr4rd ( 𝜑 ( 𝐴t 𝐵 ) = 𝐵 )