Metamath Proof Explorer


Theorem restuni5

Description: The underlying set of a subspace induced by the ` |``t ` operator. The result can be applied, for instance, to topologies and sigma-algebras. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis restuni5.1 𝑋 = 𝐽
Assertion restuni5 ( ( 𝐽𝑉𝐴𝑋 ) → 𝐴 = ( 𝐽t 𝐴 ) )

Proof

Step Hyp Ref Expression
1 restuni5.1 𝑋 = 𝐽
2 simpl ( ( 𝐽𝑉𝐴𝑋 ) → 𝐽𝑉 )
3 id ( 𝐴𝑋𝐴𝑋 )
4 3 1 sseqtrdi ( 𝐴𝑋𝐴 𝐽 )
5 4 adantl ( ( 𝐽𝑉𝐴𝑋 ) → 𝐴 𝐽 )
6 2 5 restuni4 ( ( 𝐽𝑉𝐴𝑋 ) → ( 𝐽t 𝐴 ) = 𝐴 )
7 6 eqcomd ( ( 𝐽𝑉𝐴𝑋 ) → 𝐴 = ( 𝐽t 𝐴 ) )