Metamath Proof Explorer


Theorem restuni6

Description: The underlying set of a subspace topology. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses restuni6.1 ( 𝜑𝐴𝑉 )
restuni6.2 ( 𝜑𝐵𝑊 )
Assertion restuni6 ( 𝜑 ( 𝐴t 𝐵 ) = ( 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 restuni6.1 ( 𝜑𝐴𝑉 )
2 restuni6.2 ( 𝜑𝐵𝑊 )
3 eqid 𝐴 = 𝐴
4 3 restin ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴t 𝐵 ) = ( 𝐴t ( 𝐵 𝐴 ) ) )
5 1 2 4 syl2anc ( 𝜑 → ( 𝐴t 𝐵 ) = ( 𝐴t ( 𝐵 𝐴 ) ) )
6 5 unieqd ( 𝜑 ( 𝐴t 𝐵 ) = ( 𝐴t ( 𝐵 𝐴 ) ) )
7 inss2 ( 𝐵 𝐴 ) ⊆ 𝐴
8 7 a1i ( 𝜑 → ( 𝐵 𝐴 ) ⊆ 𝐴 )
9 1 8 restuni4 ( 𝜑 ( 𝐴t ( 𝐵 𝐴 ) ) = ( 𝐵 𝐴 ) )
10 incom ( 𝐵 𝐴 ) = ( 𝐴𝐵 )
11 10 a1i ( 𝜑 → ( 𝐵 𝐴 ) = ( 𝐴𝐵 ) )
12 6 9 11 3eqtrd ( 𝜑 ( 𝐴t 𝐵 ) = ( 𝐴𝐵 ) )