Step |
Hyp |
Ref |
Expression |
1 |
|
restuni6.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
restuni6.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
3 |
|
eqid |
⊢ ∪ 𝐴 = ∪ 𝐴 |
4 |
3
|
restin |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ↾t 𝐵 ) = ( 𝐴 ↾t ( 𝐵 ∩ ∪ 𝐴 ) ) ) |
5 |
1 2 4
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ↾t 𝐵 ) = ( 𝐴 ↾t ( 𝐵 ∩ ∪ 𝐴 ) ) ) |
6 |
5
|
unieqd |
⊢ ( 𝜑 → ∪ ( 𝐴 ↾t 𝐵 ) = ∪ ( 𝐴 ↾t ( 𝐵 ∩ ∪ 𝐴 ) ) ) |
7 |
|
inss2 |
⊢ ( 𝐵 ∩ ∪ 𝐴 ) ⊆ ∪ 𝐴 |
8 |
7
|
a1i |
⊢ ( 𝜑 → ( 𝐵 ∩ ∪ 𝐴 ) ⊆ ∪ 𝐴 ) |
9 |
1 8
|
restuni4 |
⊢ ( 𝜑 → ∪ ( 𝐴 ↾t ( 𝐵 ∩ ∪ 𝐴 ) ) = ( 𝐵 ∩ ∪ 𝐴 ) ) |
10 |
|
incom |
⊢ ( 𝐵 ∩ ∪ 𝐴 ) = ( ∪ 𝐴 ∩ 𝐵 ) |
11 |
10
|
a1i |
⊢ ( 𝜑 → ( 𝐵 ∩ ∪ 𝐴 ) = ( ∪ 𝐴 ∩ 𝐵 ) ) |
12 |
6 9 11
|
3eqtrd |
⊢ ( 𝜑 → ∪ ( 𝐴 ↾t 𝐵 ) = ( ∪ 𝐴 ∩ 𝐵 ) ) |