| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
⊢ ( 𝐽 ∈ 𝑉 → 𝐽 ∈ V ) |
| 2 |
|
elex |
⊢ ( 𝐴 ∈ 𝑊 → 𝐴 ∈ V ) |
| 3 |
|
mptexg |
⊢ ( 𝐽 ∈ V → ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) ∈ V ) |
| 4 |
|
rnexg |
⊢ ( ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) ∈ V → ran ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) ∈ V ) |
| 5 |
3 4
|
syl |
⊢ ( 𝐽 ∈ V → ran ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) ∈ V ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝐽 ∈ V ∧ 𝐴 ∈ V ) → ran ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) ∈ V ) |
| 7 |
|
simpl |
⊢ ( ( 𝑗 = 𝐽 ∧ 𝑦 = 𝐴 ) → 𝑗 = 𝐽 ) |
| 8 |
|
simpr |
⊢ ( ( 𝑗 = 𝐽 ∧ 𝑦 = 𝐴 ) → 𝑦 = 𝐴 ) |
| 9 |
8
|
ineq2d |
⊢ ( ( 𝑗 = 𝐽 ∧ 𝑦 = 𝐴 ) → ( 𝑥 ∩ 𝑦 ) = ( 𝑥 ∩ 𝐴 ) ) |
| 10 |
7 9
|
mpteq12dv |
⊢ ( ( 𝑗 = 𝐽 ∧ 𝑦 = 𝐴 ) → ( 𝑥 ∈ 𝑗 ↦ ( 𝑥 ∩ 𝑦 ) ) = ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) ) |
| 11 |
10
|
rneqd |
⊢ ( ( 𝑗 = 𝐽 ∧ 𝑦 = 𝐴 ) → ran ( 𝑥 ∈ 𝑗 ↦ ( 𝑥 ∩ 𝑦 ) ) = ran ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) ) |
| 12 |
|
df-rest |
⊢ ↾t = ( 𝑗 ∈ V , 𝑦 ∈ V ↦ ran ( 𝑥 ∈ 𝑗 ↦ ( 𝑥 ∩ 𝑦 ) ) ) |
| 13 |
11 12
|
ovmpoga |
⊢ ( ( 𝐽 ∈ V ∧ 𝐴 ∈ V ∧ ran ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) ∈ V ) → ( 𝐽 ↾t 𝐴 ) = ran ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) ) |
| 14 |
6 13
|
mpd3an3 |
⊢ ( ( 𝐽 ∈ V ∧ 𝐴 ∈ V ) → ( 𝐽 ↾t 𝐴 ) = ran ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) ) |
| 15 |
1 2 14
|
syl2an |
⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝐽 ↾t 𝐴 ) = ran ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) ) |