Step |
Hyp |
Ref |
Expression |
1 |
|
negcl |
⊢ ( 𝐵 ∈ ℂ → - 𝐵 ∈ ℂ ) |
2 |
|
readd |
⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 + - 𝐵 ) ) = ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ - 𝐵 ) ) ) |
3 |
1 2
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 + - 𝐵 ) ) = ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ - 𝐵 ) ) ) |
4 |
|
reneg |
⊢ ( 𝐵 ∈ ℂ → ( ℜ ‘ - 𝐵 ) = - ( ℜ ‘ 𝐵 ) ) |
5 |
4
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ - 𝐵 ) = - ( ℜ ‘ 𝐵 ) ) |
6 |
5
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ - 𝐵 ) ) = ( ( ℜ ‘ 𝐴 ) + - ( ℜ ‘ 𝐵 ) ) ) |
7 |
3 6
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 + - 𝐵 ) ) = ( ( ℜ ‘ 𝐴 ) + - ( ℜ ‘ 𝐵 ) ) ) |
8 |
|
negsub |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
9 |
8
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 + - 𝐵 ) ) = ( ℜ ‘ ( 𝐴 − 𝐵 ) ) ) |
10 |
|
recl |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
11 |
10
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
12 |
|
recl |
⊢ ( 𝐵 ∈ ℂ → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
13 |
12
|
recnd |
⊢ ( 𝐵 ∈ ℂ → ( ℜ ‘ 𝐵 ) ∈ ℂ ) |
14 |
|
negsub |
⊢ ( ( ( ℜ ‘ 𝐴 ) ∈ ℂ ∧ ( ℜ ‘ 𝐵 ) ∈ ℂ ) → ( ( ℜ ‘ 𝐴 ) + - ( ℜ ‘ 𝐵 ) ) = ( ( ℜ ‘ 𝐴 ) − ( ℜ ‘ 𝐵 ) ) ) |
15 |
11 13 14
|
syl2an |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ 𝐴 ) + - ( ℜ ‘ 𝐵 ) ) = ( ( ℜ ‘ 𝐴 ) − ( ℜ ‘ 𝐵 ) ) ) |
16 |
7 9 15
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 − 𝐵 ) ) = ( ( ℜ ‘ 𝐴 ) − ( ℜ ‘ 𝐵 ) ) ) |