| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negcl | ⊢ ( 𝐵  ∈  ℂ  →  - 𝐵  ∈  ℂ ) | 
						
							| 2 |  | readd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  - 𝐵  ∈  ℂ )  →  ( ℜ ‘ ( 𝐴  +  - 𝐵 ) )  =  ( ( ℜ ‘ 𝐴 )  +  ( ℜ ‘ - 𝐵 ) ) ) | 
						
							| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ℜ ‘ ( 𝐴  +  - 𝐵 ) )  =  ( ( ℜ ‘ 𝐴 )  +  ( ℜ ‘ - 𝐵 ) ) ) | 
						
							| 4 |  | reneg | ⊢ ( 𝐵  ∈  ℂ  →  ( ℜ ‘ - 𝐵 )  =  - ( ℜ ‘ 𝐵 ) ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ℜ ‘ - 𝐵 )  =  - ( ℜ ‘ 𝐵 ) ) | 
						
							| 6 | 5 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( ℜ ‘ 𝐴 )  +  ( ℜ ‘ - 𝐵 ) )  =  ( ( ℜ ‘ 𝐴 )  +  - ( ℜ ‘ 𝐵 ) ) ) | 
						
							| 7 | 3 6 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ℜ ‘ ( 𝐴  +  - 𝐵 ) )  =  ( ( ℜ ‘ 𝐴 )  +  - ( ℜ ‘ 𝐵 ) ) ) | 
						
							| 8 |  | negsub | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴  +  - 𝐵 )  =  ( 𝐴  −  𝐵 ) ) | 
						
							| 9 | 8 | fveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ℜ ‘ ( 𝐴  +  - 𝐵 ) )  =  ( ℜ ‘ ( 𝐴  −  𝐵 ) ) ) | 
						
							| 10 |  | recl | ⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 11 | 10 | recnd | ⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 12 |  | recl | ⊢ ( 𝐵  ∈  ℂ  →  ( ℜ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 13 | 12 | recnd | ⊢ ( 𝐵  ∈  ℂ  →  ( ℜ ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 14 |  | negsub | ⊢ ( ( ( ℜ ‘ 𝐴 )  ∈  ℂ  ∧  ( ℜ ‘ 𝐵 )  ∈  ℂ )  →  ( ( ℜ ‘ 𝐴 )  +  - ( ℜ ‘ 𝐵 ) )  =  ( ( ℜ ‘ 𝐴 )  −  ( ℜ ‘ 𝐵 ) ) ) | 
						
							| 15 | 11 13 14 | syl2an | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( ℜ ‘ 𝐴 )  +  - ( ℜ ‘ 𝐵 ) )  =  ( ( ℜ ‘ 𝐴 )  −  ( ℜ ‘ 𝐵 ) ) ) | 
						
							| 16 | 7 9 15 | 3eqtr3d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ℜ ‘ ( 𝐴  −  𝐵 ) )  =  ( ( ℜ ‘ 𝐴 )  −  ( ℜ ‘ 𝐵 ) ) ) |