Metamath Proof Explorer


Theorem resubcl

Description: Closure law for subtraction of reals. (Contributed by NM, 20-Jan-1997)

Ref Expression
Assertion resubcl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴𝐵 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 recn ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ )
2 recn ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ )
3 negsub ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴𝐵 ) )
4 1 2 3 syl2an ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴𝐵 ) )
5 renegcl ( 𝐵 ∈ ℝ → - 𝐵 ∈ ℝ )
6 readdcl ( ( 𝐴 ∈ ℝ ∧ - 𝐵 ∈ ℝ ) → ( 𝐴 + - 𝐵 ) ∈ ℝ )
7 5 6 sylan2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + - 𝐵 ) ∈ ℝ )
8 4 7 eqeltrrd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴𝐵 ) ∈ ℝ )