Metamath Proof Explorer
Description: Closure law for subtraction of reals. (Contributed by NM, 17-Jan-1997)
(Revised by Mario Carneiro, 27-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
renegcl.1 |
⊢ 𝐴 ∈ ℝ |
|
|
resubcl.2 |
⊢ 𝐵 ∈ ℝ |
|
Assertion |
resubcli |
⊢ ( 𝐴 − 𝐵 ) ∈ ℝ |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
renegcl.1 |
⊢ 𝐴 ∈ ℝ |
| 2 |
|
resubcl.2 |
⊢ 𝐵 ∈ ℝ |
| 3 |
1
|
recni |
⊢ 𝐴 ∈ ℂ |
| 4 |
2
|
recni |
⊢ 𝐵 ∈ ℂ |
| 5 |
|
negsub |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
| 6 |
3 4 5
|
mp2an |
⊢ ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) |
| 7 |
2
|
renegcli |
⊢ - 𝐵 ∈ ℝ |
| 8 |
1 7
|
readdcli |
⊢ ( 𝐴 + - 𝐵 ) ∈ ℝ |
| 9 |
6 8
|
eqeltrri |
⊢ ( 𝐴 − 𝐵 ) ∈ ℝ |