Metamath Proof Explorer


Theorem resubdrg

Description: The real numbers form a division subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014) (Revised by Thierry Arnoux, 30-Jun-2019)

Ref Expression
Assertion resubdrg ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing )

Proof

Step Hyp Ref Expression
1 recn ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ )
2 readdcl ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + 𝑦 ) ∈ ℝ )
3 renegcl ( 𝑥 ∈ ℝ → - 𝑥 ∈ ℝ )
4 1re 1 ∈ ℝ
5 remulcl ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 · 𝑦 ) ∈ ℝ )
6 rereccl ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) → ( 1 / 𝑥 ) ∈ ℝ )
7 1 2 3 4 5 6 cnsubdrglem ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds ℝ ) ∈ DivRing )
8 df-refld fld = ( ℂflds ℝ )
9 8 eleq1i ( ℝfld ∈ DivRing ↔ ( ℂflds ℝ ) ∈ DivRing )
10 9 anbi2i ( ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing ) ↔ ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds ℝ ) ∈ DivRing ) )
11 7 10 mpbir ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing )