Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) |
2 |
|
readdcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + 𝑦 ) ∈ ℝ ) |
3 |
|
renegcl |
⊢ ( 𝑥 ∈ ℝ → - 𝑥 ∈ ℝ ) |
4 |
|
1re |
⊢ 1 ∈ ℝ |
5 |
|
remulcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 · 𝑦 ) ∈ ℝ ) |
6 |
|
rereccl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) → ( 1 / 𝑥 ) ∈ ℝ ) |
7 |
1 2 3 4 5 6
|
cnsubdrglem |
⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s ℝ ) ∈ DivRing ) |
8 |
|
df-refld |
⊢ ℝfld = ( ℂfld ↾s ℝ ) |
9 |
8
|
eleq1i |
⊢ ( ℝfld ∈ DivRing ↔ ( ℂfld ↾s ℝ ) ∈ DivRing ) |
10 |
9
|
anbi2i |
⊢ ( ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing ) ↔ ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s ℝ ) ∈ DivRing ) ) |
11 |
7 10
|
mpbir |
⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing ) |