Metamath Proof Explorer


Theorem resubgval

Description: Subtraction in the field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019)

Ref Expression
Hypothesis resubgval.m = ( -g ‘ ℝfld )
Assertion resubgval ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝑋𝑌 ) = ( 𝑋 𝑌 ) )

Proof

Step Hyp Ref Expression
1 resubgval.m = ( -g ‘ ℝfld )
2 resubdrg ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing )
3 2 simpli ℝ ∈ ( SubRing ‘ ℂfld )
4 subrgsubg ( ℝ ∈ ( SubRing ‘ ℂfld ) → ℝ ∈ ( SubGrp ‘ ℂfld ) )
5 3 4 ax-mp ℝ ∈ ( SubGrp ‘ ℂfld )
6 cnfldsub − = ( -g ‘ ℂfld )
7 df-refld fld = ( ℂflds ℝ )
8 6 7 1 subgsub ( ( ℝ ∈ ( SubGrp ‘ ℂfld ) ∧ 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝑋𝑌 ) = ( 𝑋 𝑌 ) )
9 5 8 mp3an1 ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝑋𝑌 ) = ( 𝑋 𝑌 ) )