Description: Subtraction in the field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | resubgval.m | ⊢ − = ( -g ‘ ℝfld ) | |
Assertion | resubgval | ⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝑋 − 𝑌 ) = ( 𝑋 − 𝑌 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resubgval.m | ⊢ − = ( -g ‘ ℝfld ) | |
2 | resubdrg | ⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing ) | |
3 | 2 | simpli | ⊢ ℝ ∈ ( SubRing ‘ ℂfld ) |
4 | subrgsubg | ⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) → ℝ ∈ ( SubGrp ‘ ℂfld ) ) | |
5 | 3 4 | ax-mp | ⊢ ℝ ∈ ( SubGrp ‘ ℂfld ) |
6 | cnfldsub | ⊢ − = ( -g ‘ ℂfld ) | |
7 | df-refld | ⊢ ℝfld = ( ℂfld ↾s ℝ ) | |
8 | 6 7 1 | subgsub | ⊢ ( ( ℝ ∈ ( SubGrp ‘ ℂfld ) ∧ 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝑋 − 𝑌 ) = ( 𝑋 − 𝑌 ) ) |
9 | 5 8 | mp3an1 | ⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝑋 − 𝑌 ) = ( 𝑋 − 𝑌 ) ) |