Step |
Hyp |
Ref |
Expression |
1 |
|
resubmet.1 |
⊢ 𝑅 = ( topGen ‘ ran (,) ) |
2 |
|
resubmet.2 |
⊢ 𝐽 = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) ) |
3 |
|
xpss12 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ⊆ ℝ ) → ( 𝐴 × 𝐴 ) ⊆ ( ℝ × ℝ ) ) |
4 |
3
|
anidms |
⊢ ( 𝐴 ⊆ ℝ → ( 𝐴 × 𝐴 ) ⊆ ( ℝ × ℝ ) ) |
5 |
4
|
resabs1d |
⊢ ( 𝐴 ⊆ ℝ → ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( 𝐴 × 𝐴 ) ) = ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) ) |
6 |
5
|
fveq2d |
⊢ ( 𝐴 ⊆ ℝ → ( MetOpen ‘ ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( 𝐴 × 𝐴 ) ) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) ) ) |
7 |
2 6
|
eqtr4id |
⊢ ( 𝐴 ⊆ ℝ → 𝐽 = ( MetOpen ‘ ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( 𝐴 × 𝐴 ) ) ) ) |
8 |
|
eqid |
⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) |
9 |
8
|
rexmet |
⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ ) |
10 |
|
eqid |
⊢ ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( 𝐴 × 𝐴 ) ) = ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( 𝐴 × 𝐴 ) ) |
11 |
|
eqid |
⊢ ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) |
12 |
8 11
|
tgioo |
⊢ ( topGen ‘ ran (,) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) |
13 |
1 12
|
eqtri |
⊢ 𝑅 = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) |
14 |
|
eqid |
⊢ ( MetOpen ‘ ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( 𝐴 × 𝐴 ) ) ) = ( MetOpen ‘ ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( 𝐴 × 𝐴 ) ) ) |
15 |
10 13 14
|
metrest |
⊢ ( ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ ) ∧ 𝐴 ⊆ ℝ ) → ( 𝑅 ↾t 𝐴 ) = ( MetOpen ‘ ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( 𝐴 × 𝐴 ) ) ) ) |
16 |
9 15
|
mpan |
⊢ ( 𝐴 ⊆ ℝ → ( 𝑅 ↾t 𝐴 ) = ( MetOpen ‘ ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( 𝐴 × 𝐴 ) ) ) ) |
17 |
7 16
|
eqtr4d |
⊢ ( 𝐴 ⊆ ℝ → 𝐽 = ( 𝑅 ↾t 𝐴 ) ) |