| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resubmet.1 | ⊢ 𝑅  =  ( topGen ‘ ran  (,) ) | 
						
							| 2 |  | resubmet.2 | ⊢ 𝐽  =  ( MetOpen ‘ ( ( abs  ∘   −  )  ↾  ( 𝐴  ×  𝐴 ) ) ) | 
						
							| 3 |  | xpss12 | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ⊆  ℝ )  →  ( 𝐴  ×  𝐴 )  ⊆  ( ℝ  ×  ℝ ) ) | 
						
							| 4 | 3 | anidms | ⊢ ( 𝐴  ⊆  ℝ  →  ( 𝐴  ×  𝐴 )  ⊆  ( ℝ  ×  ℝ ) ) | 
						
							| 5 | 4 | resabs1d | ⊢ ( 𝐴  ⊆  ℝ  →  ( ( ( abs  ∘   −  )  ↾  ( ℝ  ×  ℝ ) )  ↾  ( 𝐴  ×  𝐴 ) )  =  ( ( abs  ∘   −  )  ↾  ( 𝐴  ×  𝐴 ) ) ) | 
						
							| 6 | 5 | fveq2d | ⊢ ( 𝐴  ⊆  ℝ  →  ( MetOpen ‘ ( ( ( abs  ∘   −  )  ↾  ( ℝ  ×  ℝ ) )  ↾  ( 𝐴  ×  𝐴 ) ) )  =  ( MetOpen ‘ ( ( abs  ∘   −  )  ↾  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 7 | 2 6 | eqtr4id | ⊢ ( 𝐴  ⊆  ℝ  →  𝐽  =  ( MetOpen ‘ ( ( ( abs  ∘   −  )  ↾  ( ℝ  ×  ℝ ) )  ↾  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 8 |  | eqid | ⊢ ( ( abs  ∘   −  )  ↾  ( ℝ  ×  ℝ ) )  =  ( ( abs  ∘   −  )  ↾  ( ℝ  ×  ℝ ) ) | 
						
							| 9 | 8 | rexmet | ⊢ ( ( abs  ∘   −  )  ↾  ( ℝ  ×  ℝ ) )  ∈  ( ∞Met ‘ ℝ ) | 
						
							| 10 |  | eqid | ⊢ ( ( ( abs  ∘   −  )  ↾  ( ℝ  ×  ℝ ) )  ↾  ( 𝐴  ×  𝐴 ) )  =  ( ( ( abs  ∘   −  )  ↾  ( ℝ  ×  ℝ ) )  ↾  ( 𝐴  ×  𝐴 ) ) | 
						
							| 11 |  | eqid | ⊢ ( MetOpen ‘ ( ( abs  ∘   −  )  ↾  ( ℝ  ×  ℝ ) ) )  =  ( MetOpen ‘ ( ( abs  ∘   −  )  ↾  ( ℝ  ×  ℝ ) ) ) | 
						
							| 12 | 8 11 | tgioo | ⊢ ( topGen ‘ ran  (,) )  =  ( MetOpen ‘ ( ( abs  ∘   −  )  ↾  ( ℝ  ×  ℝ ) ) ) | 
						
							| 13 | 1 12 | eqtri | ⊢ 𝑅  =  ( MetOpen ‘ ( ( abs  ∘   −  )  ↾  ( ℝ  ×  ℝ ) ) ) | 
						
							| 14 |  | eqid | ⊢ ( MetOpen ‘ ( ( ( abs  ∘   −  )  ↾  ( ℝ  ×  ℝ ) )  ↾  ( 𝐴  ×  𝐴 ) ) )  =  ( MetOpen ‘ ( ( ( abs  ∘   −  )  ↾  ( ℝ  ×  ℝ ) )  ↾  ( 𝐴  ×  𝐴 ) ) ) | 
						
							| 15 | 10 13 14 | metrest | ⊢ ( ( ( ( abs  ∘   −  )  ↾  ( ℝ  ×  ℝ ) )  ∈  ( ∞Met ‘ ℝ )  ∧  𝐴  ⊆  ℝ )  →  ( 𝑅  ↾t  𝐴 )  =  ( MetOpen ‘ ( ( ( abs  ∘   −  )  ↾  ( ℝ  ×  ℝ ) )  ↾  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 16 | 9 15 | mpan | ⊢ ( 𝐴  ⊆  ℝ  →  ( 𝑅  ↾t  𝐴 )  =  ( MetOpen ‘ ( ( ( abs  ∘   −  )  ↾  ( ℝ  ×  ℝ ) )  ↾  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 17 | 7 16 | eqtr4d | ⊢ ( 𝐴  ⊆  ℝ  →  𝐽  =  ( 𝑅  ↾t  𝐴 ) ) |