| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resum2sqcl.q |
⊢ 𝑄 = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) |
| 2 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℝ ) |
| 3 |
2
|
resqcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 𝐴 ↑ 2 ) ∈ ℝ ) |
| 4 |
3
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ↑ 2 ) ∈ ℝ ) |
| 5 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ ) |
| 6 |
5
|
resqcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → ( 𝐵 ↑ 2 ) ∈ ℝ ) |
| 7 |
|
sqgt0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 0 < ( 𝐴 ↑ 2 ) ) |
| 8 |
7
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → 0 < ( 𝐴 ↑ 2 ) ) |
| 9 |
|
sqge0 |
⊢ ( 𝐵 ∈ ℝ → 0 ≤ ( 𝐵 ↑ 2 ) ) |
| 10 |
9
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → 0 ≤ ( 𝐵 ↑ 2 ) ) |
| 11 |
4 6 8 10
|
addgtge0d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → 0 < ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) |
| 12 |
11 1
|
breqtrrdi |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → 0 < 𝑄 ) |