Metamath Proof Explorer


Theorem resum2sqgt0

Description: The sum of the square of a nonzero real number and the square of another real number is greater than zero. (Contributed by AV, 7-Feb-2023)

Ref Expression
Hypothesis resum2sqcl.q 𝑄 = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) )
Assertion resum2sqgt0 ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → 0 < 𝑄 )

Proof

Step Hyp Ref Expression
1 resum2sqcl.q 𝑄 = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) )
2 simpl ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℝ )
3 2 resqcld ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 𝐴 ↑ 2 ) ∈ ℝ )
4 3 adantr ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ↑ 2 ) ∈ ℝ )
5 simpr ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ )
6 5 resqcld ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → ( 𝐵 ↑ 2 ) ∈ ℝ )
7 sqgt0 ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 0 < ( 𝐴 ↑ 2 ) )
8 7 adantr ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → 0 < ( 𝐴 ↑ 2 ) )
9 sqge0 ( 𝐵 ∈ ℝ → 0 ≤ ( 𝐵 ↑ 2 ) )
10 9 adantl ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → 0 ≤ ( 𝐵 ↑ 2 ) )
11 4 6 8 10 addgtge0d ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → 0 < ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) )
12 11 1 breqtrrdi ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → 0 < 𝑄 )