Step |
Hyp |
Ref |
Expression |
1 |
|
resum2sqcl.q |
⊢ 𝑄 = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) |
2 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℝ ) |
3 |
2
|
resqcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 𝐴 ↑ 2 ) ∈ ℝ ) |
4 |
3
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ↑ 2 ) ∈ ℝ ) |
5 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ ) |
6 |
5
|
resqcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → ( 𝐵 ↑ 2 ) ∈ ℝ ) |
7 |
|
sqgt0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 0 < ( 𝐴 ↑ 2 ) ) |
8 |
7
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → 0 < ( 𝐴 ↑ 2 ) ) |
9 |
|
sqge0 |
⊢ ( 𝐵 ∈ ℝ → 0 ≤ ( 𝐵 ↑ 2 ) ) |
10 |
9
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → 0 ≤ ( 𝐵 ↑ 2 ) ) |
11 |
4 6 8 10
|
addgtge0d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → 0 < ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) |
12 |
11 1
|
breqtrrdi |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → 0 < 𝑄 ) |