Description: Distributive law for restriction over union. (Contributed by NM, 23-Sep-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resundir | ⊢ ( ( 𝐴 ∪ 𝐵 ) ↾ 𝐶 ) = ( ( 𝐴 ↾ 𝐶 ) ∪ ( 𝐵 ↾ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indir | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐶 × V ) ) = ( ( 𝐴 ∩ ( 𝐶 × V ) ) ∪ ( 𝐵 ∩ ( 𝐶 × V ) ) ) | |
| 2 | df-res | ⊢ ( ( 𝐴 ∪ 𝐵 ) ↾ 𝐶 ) = ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐶 × V ) ) | |
| 3 | df-res | ⊢ ( 𝐴 ↾ 𝐶 ) = ( 𝐴 ∩ ( 𝐶 × V ) ) | |
| 4 | df-res | ⊢ ( 𝐵 ↾ 𝐶 ) = ( 𝐵 ∩ ( 𝐶 × V ) ) | |
| 5 | 3 4 | uneq12i | ⊢ ( ( 𝐴 ↾ 𝐶 ) ∪ ( 𝐵 ↾ 𝐶 ) ) = ( ( 𝐴 ∩ ( 𝐶 × V ) ) ∪ ( 𝐵 ∩ ( 𝐶 × V ) ) ) |
| 6 | 1 2 5 | 3eqtr4i | ⊢ ( ( 𝐴 ∪ 𝐵 ) ↾ 𝐶 ) = ( ( 𝐴 ↾ 𝐶 ) ∪ ( 𝐵 ↾ 𝐶 ) ) |