Step |
Hyp |
Ref |
Expression |
1 |
|
resunimafz0.i |
⊢ ( 𝜑 → Fun 𝐼 ) |
2 |
|
resunimafz0.f |
⊢ ( 𝜑 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) |
3 |
|
resunimafz0.n |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
4 |
|
imaundi |
⊢ ( 𝐹 “ ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) ) = ( ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∪ ( 𝐹 “ { 𝑁 } ) ) |
5 |
|
elfzonn0 |
⊢ ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑁 ∈ ℕ0 ) |
6 |
3 5
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
7 |
|
elnn0uz |
⊢ ( 𝑁 ∈ ℕ0 ↔ 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
8 |
6 7
|
sylib |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
9 |
|
fzisfzounsn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → ( 0 ... 𝑁 ) = ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) ) |
10 |
8 9
|
syl |
⊢ ( 𝜑 → ( 0 ... 𝑁 ) = ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) ) |
11 |
10
|
imaeq2d |
⊢ ( 𝜑 → ( 𝐹 “ ( 0 ... 𝑁 ) ) = ( 𝐹 “ ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) ) ) |
12 |
2
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
13 |
|
fnsnfv |
⊢ ( ( 𝐹 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → { ( 𝐹 ‘ 𝑁 ) } = ( 𝐹 “ { 𝑁 } ) ) |
14 |
12 3 13
|
syl2anc |
⊢ ( 𝜑 → { ( 𝐹 ‘ 𝑁 ) } = ( 𝐹 “ { 𝑁 } ) ) |
15 |
14
|
uneq2d |
⊢ ( 𝜑 → ( ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∪ { ( 𝐹 ‘ 𝑁 ) } ) = ( ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∪ ( 𝐹 “ { 𝑁 } ) ) ) |
16 |
4 11 15
|
3eqtr4a |
⊢ ( 𝜑 → ( 𝐹 “ ( 0 ... 𝑁 ) ) = ( ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∪ { ( 𝐹 ‘ 𝑁 ) } ) ) |
17 |
16
|
reseq2d |
⊢ ( 𝜑 → ( 𝐼 ↾ ( 𝐹 “ ( 0 ... 𝑁 ) ) ) = ( 𝐼 ↾ ( ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∪ { ( 𝐹 ‘ 𝑁 ) } ) ) ) |
18 |
|
resundi |
⊢ ( 𝐼 ↾ ( ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∪ { ( 𝐹 ‘ 𝑁 ) } ) ) = ( ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ∪ ( 𝐼 ↾ { ( 𝐹 ‘ 𝑁 ) } ) ) |
19 |
17 18
|
eqtrdi |
⊢ ( 𝜑 → ( 𝐼 ↾ ( 𝐹 “ ( 0 ... 𝑁 ) ) ) = ( ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ∪ ( 𝐼 ↾ { ( 𝐹 ‘ 𝑁 ) } ) ) ) |
20 |
1
|
funfnd |
⊢ ( 𝜑 → 𝐼 Fn dom 𝐼 ) |
21 |
2 3
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ dom 𝐼 ) |
22 |
|
fnressn |
⊢ ( ( 𝐼 Fn dom 𝐼 ∧ ( 𝐹 ‘ 𝑁 ) ∈ dom 𝐼 ) → ( 𝐼 ↾ { ( 𝐹 ‘ 𝑁 ) } ) = { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) |
23 |
20 21 22
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ↾ { ( 𝐹 ‘ 𝑁 ) } ) = { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) |
24 |
23
|
uneq2d |
⊢ ( 𝜑 → ( ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ∪ ( 𝐼 ↾ { ( 𝐹 ‘ 𝑁 ) } ) ) = ( ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ∪ { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) ) |
25 |
19 24
|
eqtrd |
⊢ ( 𝜑 → ( 𝐼 ↾ ( 𝐹 “ ( 0 ... 𝑁 ) ) ) = ( ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ∪ { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) ) |