Metamath Proof Explorer
		
		
		
		Description:  +g is unaffected by scalar restriction.  (Contributed by Thierry
         Arnoux, 6-Sep-2018)  (Revised by AV, 31-Oct-2024)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | resvbas.1 | ⊢ 𝐻  =  ( 𝐺  ↾v  𝐴 ) | 
					
						|  |  | resvplusg.2 | ⊢  +   =  ( +g ‘ 𝐺 ) | 
				
					|  | Assertion | resvplusg | ⊢  ( 𝐴  ∈  𝑉  →   +   =  ( +g ‘ 𝐻 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resvbas.1 | ⊢ 𝐻  =  ( 𝐺  ↾v  𝐴 ) | 
						
							| 2 |  | resvplusg.2 | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | plusgid | ⊢ +g  =  Slot  ( +g ‘ ndx ) | 
						
							| 4 |  | scandxnplusgndx | ⊢ ( Scalar ‘ ndx )  ≠  ( +g ‘ ndx ) | 
						
							| 5 | 4 | necomi | ⊢ ( +g ‘ ndx )  ≠  ( Scalar ‘ ndx ) | 
						
							| 6 | 1 2 3 5 | resvlem | ⊢ ( 𝐴  ∈  𝑉  →   +   =  ( +g ‘ 𝐻 ) ) |