Metamath Proof Explorer


Theorem retancld

Description: Closure of the tangent function. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses resincld.1 ( 𝜑𝐴 ∈ ℝ )
retancld.2 ( 𝜑 → ( cos ‘ 𝐴 ) ≠ 0 )
Assertion retancld ( 𝜑 → ( tan ‘ 𝐴 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 resincld.1 ( 𝜑𝐴 ∈ ℝ )
2 retancld.2 ( 𝜑 → ( cos ‘ 𝐴 ) ≠ 0 )
3 retancl ( ( 𝐴 ∈ ℝ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ 𝐴 ) ∈ ℝ )
4 1 2 3 syl2anc ( 𝜑 → ( tan ‘ 𝐴 ) ∈ ℝ )