| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-icn |
⊢ i ∈ ℂ |
| 2 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 3 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) |
| 4 |
1 2 3
|
sylancr |
⊢ ( 𝐴 ∈ ℝ → ( i · 𝐴 ) ∈ ℂ ) |
| 5 |
|
rpcoshcl |
⊢ ( 𝐴 ∈ ℝ → ( cos ‘ ( i · 𝐴 ) ) ∈ ℝ+ ) |
| 6 |
5
|
rpne0d |
⊢ ( 𝐴 ∈ ℝ → ( cos ‘ ( i · 𝐴 ) ) ≠ 0 ) |
| 7 |
|
tanval |
⊢ ( ( ( i · 𝐴 ) ∈ ℂ ∧ ( cos ‘ ( i · 𝐴 ) ) ≠ 0 ) → ( tan ‘ ( i · 𝐴 ) ) = ( ( sin ‘ ( i · 𝐴 ) ) / ( cos ‘ ( i · 𝐴 ) ) ) ) |
| 8 |
4 6 7
|
syl2anc |
⊢ ( 𝐴 ∈ ℝ → ( tan ‘ ( i · 𝐴 ) ) = ( ( sin ‘ ( i · 𝐴 ) ) / ( cos ‘ ( i · 𝐴 ) ) ) ) |
| 9 |
8
|
oveq1d |
⊢ ( 𝐴 ∈ ℝ → ( ( tan ‘ ( i · 𝐴 ) ) / i ) = ( ( ( sin ‘ ( i · 𝐴 ) ) / ( cos ‘ ( i · 𝐴 ) ) ) / i ) ) |
| 10 |
4
|
sincld |
⊢ ( 𝐴 ∈ ℝ → ( sin ‘ ( i · 𝐴 ) ) ∈ ℂ ) |
| 11 |
|
recoshcl |
⊢ ( 𝐴 ∈ ℝ → ( cos ‘ ( i · 𝐴 ) ) ∈ ℝ ) |
| 12 |
11
|
recnd |
⊢ ( 𝐴 ∈ ℝ → ( cos ‘ ( i · 𝐴 ) ) ∈ ℂ ) |
| 13 |
1
|
a1i |
⊢ ( 𝐴 ∈ ℝ → i ∈ ℂ ) |
| 14 |
|
ine0 |
⊢ i ≠ 0 |
| 15 |
14
|
a1i |
⊢ ( 𝐴 ∈ ℝ → i ≠ 0 ) |
| 16 |
10 12 13 6 15
|
divdiv32d |
⊢ ( 𝐴 ∈ ℝ → ( ( ( sin ‘ ( i · 𝐴 ) ) / ( cos ‘ ( i · 𝐴 ) ) ) / i ) = ( ( ( sin ‘ ( i · 𝐴 ) ) / i ) / ( cos ‘ ( i · 𝐴 ) ) ) ) |
| 17 |
9 16
|
eqtrd |
⊢ ( 𝐴 ∈ ℝ → ( ( tan ‘ ( i · 𝐴 ) ) / i ) = ( ( ( sin ‘ ( i · 𝐴 ) ) / i ) / ( cos ‘ ( i · 𝐴 ) ) ) ) |
| 18 |
|
resinhcl |
⊢ ( 𝐴 ∈ ℝ → ( ( sin ‘ ( i · 𝐴 ) ) / i ) ∈ ℝ ) |
| 19 |
18 5
|
rerpdivcld |
⊢ ( 𝐴 ∈ ℝ → ( ( ( sin ‘ ( i · 𝐴 ) ) / i ) / ( cos ‘ ( i · 𝐴 ) ) ) ∈ ℝ ) |
| 20 |
17 19
|
eqeltrd |
⊢ ( 𝐴 ∈ ℝ → ( ( tan ‘ ( i · 𝐴 ) ) / i ) ∈ ℝ ) |