Step |
Hyp |
Ref |
Expression |
1 |
|
merco1lem1 |
⊢ ( ( ( ( ( 𝜑 → 𝜑 ) → 𝜑 ) → ( 𝜑 → ⊥ ) ) → 𝜑 ) → ( ⊥ → 𝜑 ) ) |
2 |
|
merco1 |
⊢ ( ( ( ( ( ( 𝜑 → 𝜑 ) → 𝜑 ) → ( 𝜑 → ⊥ ) ) → 𝜑 ) → ( ⊥ → 𝜑 ) ) → ( ( ( ⊥ → 𝜑 ) → ( 𝜑 → 𝜑 ) ) → ( 𝜑 → ( 𝜑 → 𝜑 ) ) ) ) |
3 |
1 2
|
ax-mp |
⊢ ( ( ( ⊥ → 𝜑 ) → ( 𝜑 → 𝜑 ) ) → ( 𝜑 → ( 𝜑 → 𝜑 ) ) ) |
4 |
|
merco1 |
⊢ ( ( ( ( ( 𝜑 → ( 𝜑 → 𝜑 ) ) → ( 𝜑 → ⊥ ) ) → ( 𝜑 → ⊥ ) ) → ⊥ ) → ( ( ⊥ → 𝜑 ) → ( 𝜑 → 𝜑 ) ) ) |
5 |
|
merco1 |
⊢ ( ( ( ( ( ( 𝜑 → ( 𝜑 → 𝜑 ) ) → ( 𝜑 → ⊥ ) ) → ( 𝜑 → ⊥ ) ) → ⊥ ) → ( ( ⊥ → 𝜑 ) → ( 𝜑 → 𝜑 ) ) ) → ( ( ( ( ⊥ → 𝜑 ) → ( 𝜑 → 𝜑 ) ) → ( 𝜑 → ( 𝜑 → 𝜑 ) ) ) → ( 𝜑 → ( 𝜑 → ( 𝜑 → 𝜑 ) ) ) ) ) |
6 |
4 5
|
ax-mp |
⊢ ( ( ( ( ⊥ → 𝜑 ) → ( 𝜑 → 𝜑 ) ) → ( 𝜑 → ( 𝜑 → 𝜑 ) ) ) → ( 𝜑 → ( 𝜑 → ( 𝜑 → 𝜑 ) ) ) ) |
7 |
3 6
|
ax-mp |
⊢ ( 𝜑 → ( 𝜑 → ( 𝜑 → 𝜑 ) ) ) |
8 |
|
merco1lem1 |
⊢ ( ( ( ( ( 𝜓 → 𝜑 ) → 𝜑 ) → ( 𝜑 → ⊥ ) ) → 𝜑 ) → ( ⊥ → 𝜑 ) ) |
9 |
|
merco1 |
⊢ ( ( ( ( ( ( 𝜓 → 𝜑 ) → 𝜑 ) → ( 𝜑 → ⊥ ) ) → 𝜑 ) → ( ⊥ → 𝜑 ) ) → ( ( ( ⊥ → 𝜑 ) → ( 𝜓 → 𝜑 ) ) → ( 𝜑 → ( 𝜓 → 𝜑 ) ) ) ) |
10 |
8 9
|
ax-mp |
⊢ ( ( ( ⊥ → 𝜑 ) → ( 𝜓 → 𝜑 ) ) → ( 𝜑 → ( 𝜓 → 𝜑 ) ) ) |
11 |
|
merco1 |
⊢ ( ( ( ( ( 𝜑 → ( 𝜓 → 𝜑 ) ) → ( 𝜓 → ⊥ ) ) → ( ( 𝜑 → ( 𝜑 → ( 𝜑 → 𝜑 ) ) ) → ⊥ ) ) → ⊥ ) → ( ( ⊥ → 𝜑 ) → ( 𝜓 → 𝜑 ) ) ) |
12 |
|
merco1 |
⊢ ( ( ( ( ( ( 𝜑 → ( 𝜓 → 𝜑 ) ) → ( 𝜓 → ⊥ ) ) → ( ( 𝜑 → ( 𝜑 → ( 𝜑 → 𝜑 ) ) ) → ⊥ ) ) → ⊥ ) → ( ( ⊥ → 𝜑 ) → ( 𝜓 → 𝜑 ) ) ) → ( ( ( ( ⊥ → 𝜑 ) → ( 𝜓 → 𝜑 ) ) → ( 𝜑 → ( 𝜓 → 𝜑 ) ) ) → ( ( 𝜑 → ( 𝜑 → ( 𝜑 → 𝜑 ) ) ) → ( 𝜑 → ( 𝜓 → 𝜑 ) ) ) ) ) |
13 |
11 12
|
ax-mp |
⊢ ( ( ( ( ⊥ → 𝜑 ) → ( 𝜓 → 𝜑 ) ) → ( 𝜑 → ( 𝜓 → 𝜑 ) ) ) → ( ( 𝜑 → ( 𝜑 → ( 𝜑 → 𝜑 ) ) ) → ( 𝜑 → ( 𝜓 → 𝜑 ) ) ) ) |
14 |
10 13
|
ax-mp |
⊢ ( ( 𝜑 → ( 𝜑 → ( 𝜑 → 𝜑 ) ) ) → ( 𝜑 → ( 𝜓 → 𝜑 ) ) ) |
15 |
7 14
|
ax-mp |
⊢ ( 𝜑 → ( 𝜓 → 𝜑 ) ) |