Metamath Proof Explorer


Theorem retopbas

Description: A basis for the standard topology on the reals. (Contributed by NM, 6-Feb-2007) (Proof shortened by Mario Carneiro, 17-Jun-2014)

Ref Expression
Assertion retopbas ran (,) ∈ TopBases

Proof

Step Hyp Ref Expression
1 ioof (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ
2 1 fdmi dom (,) = ( ℝ* × ℝ* )
3 2 imaeq2i ( (,) “ dom (,) ) = ( (,) “ ( ℝ* × ℝ* ) )
4 imadmrn ( (,) “ dom (,) ) = ran (,)
5 3 4 eqtr3i ( (,) “ ( ℝ* × ℝ* ) ) = ran (,)
6 ssid * ⊆ ℝ*
7 6 qtopbaslem ( (,) “ ( ℝ* × ℝ* ) ) ∈ TopBases
8 5 7 eqeltrri ran (,) ∈ TopBases