Step |
Hyp |
Ref |
Expression |
1 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
2 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
3 |
2
|
restid |
⊢ ( ( topGen ‘ ran (,) ) ∈ Top → ( ( topGen ‘ ran (,) ) ↾t ℝ ) = ( topGen ‘ ran (,) ) ) |
4 |
1 3
|
ax-mp |
⊢ ( ( topGen ‘ ran (,) ) ↾t ℝ ) = ( topGen ‘ ran (,) ) |
5 |
|
iccssre |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 [,] 𝑦 ) ⊆ ℝ ) |
6 |
5
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ ( 𝑥 [,] 𝑦 ) ⊆ ℝ |
7 |
|
ssid |
⊢ ℝ ⊆ ℝ |
8 |
|
reconn |
⊢ ( ℝ ⊆ ℝ → ( ( ( topGen ‘ ran (,) ) ↾t ℝ ) ∈ Conn ↔ ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ ( 𝑥 [,] 𝑦 ) ⊆ ℝ ) ) |
9 |
7 8
|
ax-mp |
⊢ ( ( ( topGen ‘ ran (,) ) ↾t ℝ ) ∈ Conn ↔ ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ ( 𝑥 [,] 𝑦 ) ⊆ ℝ ) |
10 |
6 9
|
mpbir |
⊢ ( ( topGen ‘ ran (,) ) ↾t ℝ ) ∈ Conn |
11 |
4 10
|
eqeltrri |
⊢ ( topGen ‘ ran (,) ) ∈ Conn |