| Step | Hyp | Ref | Expression | 
						
							| 1 |  | retop | ⊢ ( topGen ‘ ran  (,) )  ∈  Top | 
						
							| 2 |  | uniretop | ⊢ ℝ  =  ∪  ( topGen ‘ ran  (,) ) | 
						
							| 3 | 2 | restid | ⊢ ( ( topGen ‘ ran  (,) )  ∈  Top  →  ( ( topGen ‘ ran  (,) )  ↾t  ℝ )  =  ( topGen ‘ ran  (,) ) ) | 
						
							| 4 | 1 3 | ax-mp | ⊢ ( ( topGen ‘ ran  (,) )  ↾t  ℝ )  =  ( topGen ‘ ran  (,) ) | 
						
							| 5 |  | iccssre | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝑥 [,] 𝑦 )  ⊆  ℝ ) | 
						
							| 6 | 5 | rgen2 | ⊢ ∀ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ℝ ( 𝑥 [,] 𝑦 )  ⊆  ℝ | 
						
							| 7 |  | ssid | ⊢ ℝ  ⊆  ℝ | 
						
							| 8 |  | reconn | ⊢ ( ℝ  ⊆  ℝ  →  ( ( ( topGen ‘ ran  (,) )  ↾t  ℝ )  ∈  Conn  ↔  ∀ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ℝ ( 𝑥 [,] 𝑦 )  ⊆  ℝ ) ) | 
						
							| 9 | 7 8 | ax-mp | ⊢ ( ( ( topGen ‘ ran  (,) )  ↾t  ℝ )  ∈  Conn  ↔  ∀ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ℝ ( 𝑥 [,] 𝑦 )  ⊆  ℝ ) | 
						
							| 10 | 6 9 | mpbir | ⊢ ( ( topGen ‘ ran  (,) )  ↾t  ℝ )  ∈  Conn | 
						
							| 11 | 4 10 | eqeltrri | ⊢ ( topGen ‘ ran  (,) )  ∈  Conn |