Metamath Proof Explorer


Theorem retos

Description: The real numbers are a totally ordered set. (Contributed by Thierry Arnoux, 21-Jan-2018)

Ref Expression
Assertion retos fld ∈ Toset

Proof

Step Hyp Ref Expression
1 ltso < Or ℝ
2 idref ( ( I ↾ ℝ ) ⊆ ≤ ↔ ∀ 𝑥 ∈ ℝ 𝑥𝑥 )
3 leid ( 𝑥 ∈ ℝ → 𝑥𝑥 )
4 2 3 mprgbir ( I ↾ ℝ ) ⊆ ≤
5 df-refld fld = ( ℂflds ℝ )
6 5 ovexi fld ∈ V
7 rebase ℝ = ( Base ‘ ℝfld )
8 rele2 ≤ = ( le ‘ ℝfld )
9 relt < = ( lt ‘ ℝfld )
10 7 8 9 tosso ( ℝfld ∈ V → ( ℝfld ∈ Toset ↔ ( < Or ℝ ∧ ( I ↾ ℝ ) ⊆ ≤ ) ) )
11 6 10 ax-mp ( ℝfld ∈ Toset ↔ ( < Or ℝ ∧ ( I ↾ ℝ ) ⊆ ≤ ) )
12 1 4 11 mpbir2an fld ∈ Toset