Metamath Proof Explorer


Theorem retps

Description: The standard topological space on the reals. (Contributed by NM, 19-Oct-2012)

Ref Expression
Hypothesis retps.k 𝐾 = { ⟨ ( Base ‘ ndx ) , ℝ ⟩ , ⟨ ( TopSet ‘ ndx ) , ( topGen ‘ ran (,) ) ⟩ }
Assertion retps 𝐾 ∈ TopSp

Proof

Step Hyp Ref Expression
1 retps.k 𝐾 = { ⟨ ( Base ‘ ndx ) , ℝ ⟩ , ⟨ ( TopSet ‘ ndx ) , ( topGen ‘ ran (,) ) ⟩ }
2 uniretop ℝ = ( topGen ‘ ran (,) )
3 retop ( topGen ‘ ran (,) ) ∈ Top
4 1 2 3 eltpsi 𝐾 ∈ TopSp