Metamath Proof Explorer


Theorem reu0

Description: Vacuous restricted uniqueness is always false. (Contributed by AV, 3-Apr-2023)

Ref Expression
Assertion reu0 ¬ ∃! 𝑥 ∈ ∅ 𝜑

Proof

Step Hyp Ref Expression
1 rex0 ¬ ∃ 𝑥 ∈ ∅ 𝜑
2 reurex ( ∃! 𝑥 ∈ ∅ 𝜑 → ∃ 𝑥 ∈ ∅ 𝜑 )
3 1 2 mto ¬ ∃! 𝑥 ∈ ∅ 𝜑