Step |
Hyp |
Ref |
Expression |
1 |
|
reu2eqd.1 |
⊢ ( 𝑥 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) |
2 |
|
reu2eqd.2 |
⊢ ( 𝑥 = 𝐶 → ( 𝜓 ↔ 𝜃 ) ) |
3 |
|
reu2eqd.3 |
⊢ ( 𝜑 → ∃! 𝑥 ∈ 𝐴 𝜓 ) |
4 |
|
reu2eqd.4 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) |
5 |
|
reu2eqd.5 |
⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) |
6 |
|
reu2eqd.6 |
⊢ ( 𝜑 → 𝜒 ) |
7 |
|
reu2eqd.7 |
⊢ ( 𝜑 → 𝜃 ) |
8 |
|
reu2 |
⊢ ( ∃! 𝑥 ∈ 𝐴 𝜓 ↔ ( ∃ 𝑥 ∈ 𝐴 𝜓 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) → 𝑥 = 𝑦 ) ) ) |
9 |
3 8
|
sylib |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) → 𝑥 = 𝑦 ) ) ) |
10 |
9
|
simprd |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) → 𝑥 = 𝑦 ) ) |
11 |
|
nfv |
⊢ Ⅎ 𝑥 𝜒 |
12 |
|
nfs1v |
⊢ Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜓 |
13 |
11 12
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜒 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) |
14 |
|
nfv |
⊢ Ⅎ 𝑥 𝐵 = 𝑦 |
15 |
13 14
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜒 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) → 𝐵 = 𝑦 ) |
16 |
|
nfv |
⊢ Ⅎ 𝑦 ( ( 𝜒 ∧ 𝜃 ) → 𝐵 = 𝐶 ) |
17 |
1
|
anbi1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ↔ ( 𝜒 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) ) |
18 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 = 𝑦 ↔ 𝐵 = 𝑦 ) ) |
19 |
17 18
|
imbi12d |
⊢ ( 𝑥 = 𝐵 → ( ( ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝜒 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) → 𝐵 = 𝑦 ) ) ) |
20 |
|
nfv |
⊢ Ⅎ 𝑥 𝜃 |
21 |
20 2
|
sbhypf |
⊢ ( 𝑦 = 𝐶 → ( [ 𝑦 / 𝑥 ] 𝜓 ↔ 𝜃 ) ) |
22 |
21
|
anbi2d |
⊢ ( 𝑦 = 𝐶 → ( ( 𝜒 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ↔ ( 𝜒 ∧ 𝜃 ) ) ) |
23 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐶 → ( 𝐵 = 𝑦 ↔ 𝐵 = 𝐶 ) ) |
24 |
22 23
|
imbi12d |
⊢ ( 𝑦 = 𝐶 → ( ( ( 𝜒 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) → 𝐵 = 𝑦 ) ↔ ( ( 𝜒 ∧ 𝜃 ) → 𝐵 = 𝐶 ) ) ) |
25 |
15 16 19 24
|
rspc2 |
⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) → 𝑥 = 𝑦 ) → ( ( 𝜒 ∧ 𝜃 ) → 𝐵 = 𝐶 ) ) ) |
26 |
4 5 25
|
syl2anc |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) → 𝑥 = 𝑦 ) → ( ( 𝜒 ∧ 𝜃 ) → 𝐵 = 𝐶 ) ) ) |
27 |
10 26
|
mpd |
⊢ ( 𝜑 → ( ( 𝜒 ∧ 𝜃 ) → 𝐵 = 𝐶 ) ) |
28 |
6 7 27
|
mp2and |
⊢ ( 𝜑 → 𝐵 = 𝐶 ) |