Step |
Hyp |
Ref |
Expression |
1 |
|
reurex |
⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜑 ) |
2 |
|
reu6 |
⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) |
3 |
|
biimp |
⊢ ( ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( 𝜑 → 𝑥 = 𝑦 ) ) |
4 |
3
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ) |
5 |
4
|
reximi |
⊢ ( ∃ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∃ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ) |
6 |
2 5
|
sylbi |
⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ) |
7 |
1 6
|
jca |
⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
8 |
|
rexex |
⊢ ( ∃ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) → ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ) |
9 |
8
|
anim2i |
⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ) → ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
10 |
|
eu3v |
⊢ ( ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ∃ 𝑦 ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝑦 ) ) ) |
11 |
|
df-reu |
⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
12 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
13 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
14 |
|
impexp |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝑦 ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
15 |
14
|
albii |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
16 |
13 15
|
bitr4i |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝑦 ) ) |
17 |
16
|
exbii |
⊢ ( ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ↔ ∃ 𝑦 ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝑦 ) ) |
18 |
12 17
|
anbi12i |
⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ) ↔ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ∃ 𝑦 ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝑦 ) ) ) |
19 |
10 11 18
|
3bitr4i |
⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
20 |
9 19
|
sylibr |
⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ) → ∃! 𝑥 ∈ 𝐴 𝜑 ) |
21 |
7 20
|
impbii |
⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |