Metamath Proof Explorer


Theorem reu5

Description: Restricted uniqueness in terms of "at most one". (Contributed by NM, 23-May-1999) (Revised by NM, 16-Jun-2017)

Ref Expression
Assertion reu5 ( ∃! 𝑥𝐴 𝜑 ↔ ( ∃ 𝑥𝐴 𝜑 ∧ ∃* 𝑥𝐴 𝜑 ) )

Proof

Step Hyp Ref Expression
1 df-eu ( ∃! 𝑥 ( 𝑥𝐴𝜑 ) ↔ ( ∃ 𝑥 ( 𝑥𝐴𝜑 ) ∧ ∃* 𝑥 ( 𝑥𝐴𝜑 ) ) )
2 df-reu ( ∃! 𝑥𝐴 𝜑 ↔ ∃! 𝑥 ( 𝑥𝐴𝜑 ) )
3 df-rex ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥𝐴𝜑 ) )
4 df-rmo ( ∃* 𝑥𝐴 𝜑 ↔ ∃* 𝑥 ( 𝑥𝐴𝜑 ) )
5 3 4 anbi12i ( ( ∃ 𝑥𝐴 𝜑 ∧ ∃* 𝑥𝐴 𝜑 ) ↔ ( ∃ 𝑥 ( 𝑥𝐴𝜑 ) ∧ ∃* 𝑥 ( 𝑥𝐴𝜑 ) ) )
6 1 2 5 3bitr4i ( ∃! 𝑥𝐴 𝜑 ↔ ( ∃ 𝑥𝐴 𝜑 ∧ ∃* 𝑥𝐴 𝜑 ) )