Step |
Hyp |
Ref |
Expression |
1 |
|
df-reu |
⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
2 |
|
19.28v |
⊢ ( ∀ 𝑥 ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) ↔ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) ) |
3 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
4 |
|
sbequ12 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
5 |
3 4
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑦 ∈ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
6 |
|
equequ1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑦 ↔ 𝑦 = 𝑦 ) ) |
7 |
5 6
|
bibi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ 𝑥 = 𝑦 ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ 𝑦 = 𝑦 ) ) ) |
8 |
|
equid |
⊢ 𝑦 = 𝑦 |
9 |
8
|
tbt |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ 𝑦 = 𝑦 ) ) |
10 |
|
simpl |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑦 ∈ 𝐴 ) |
11 |
9 10
|
sylbir |
⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ 𝑦 = 𝑦 ) → 𝑦 ∈ 𝐴 ) |
12 |
7 11
|
syl6bi |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ 𝑥 = 𝑦 ) → 𝑦 ∈ 𝐴 ) ) |
13 |
12
|
spimvw |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ 𝑥 = 𝑦 ) → 𝑦 ∈ 𝐴 ) |
14 |
|
ibar |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
15 |
14
|
bibi1d |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ 𝑥 = 𝑦 ) ) ) |
16 |
15
|
biimprcd |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ 𝑥 = 𝑦 ) → ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
17 |
16
|
sps |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ 𝑥 = 𝑦 ) → ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
18 |
13 17
|
jca |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ 𝑥 = 𝑦 ) → ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) ) |
19 |
18
|
axc4i |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ 𝑥 = 𝑦 ) → ∀ 𝑥 ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) ) |
20 |
|
biimp |
⊢ ( ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( 𝜑 → 𝑥 = 𝑦 ) ) |
21 |
20
|
imim2i |
⊢ ( ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) → ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
22 |
21
|
impd |
⊢ ( ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝑦 ) ) |
23 |
22
|
adantl |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝑦 ) ) |
24 |
3
|
biimprcd |
⊢ ( 𝑦 ∈ 𝐴 → ( 𝑥 = 𝑦 → 𝑥 ∈ 𝐴 ) ) |
25 |
24
|
adantr |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) → ( 𝑥 = 𝑦 → 𝑥 ∈ 𝐴 ) ) |
26 |
25
|
imp |
⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) ∧ 𝑥 = 𝑦 ) → 𝑥 ∈ 𝐴 ) |
27 |
|
simplr |
⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) ∧ 𝑥 = 𝑦 ) → ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
28 |
|
simpr |
⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) ∧ 𝑥 = 𝑦 ) → 𝑥 = 𝑦 ) |
29 |
|
biimpr |
⊢ ( ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( 𝑥 = 𝑦 → 𝜑 ) ) |
30 |
27 28 29
|
syl6ci |
⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) ∧ 𝑥 = 𝑦 ) → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
31 |
26 30
|
jcai |
⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) ∧ 𝑥 = 𝑦 ) → ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
32 |
31
|
ex |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) → ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
33 |
23 32
|
impbid |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ 𝑥 = 𝑦 ) ) |
34 |
33
|
alimi |
⊢ ( ∀ 𝑥 ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) → ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ 𝑥 = 𝑦 ) ) |
35 |
19 34
|
impbii |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) ) |
36 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
37 |
36
|
anbi2i |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ↔ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) ) |
38 |
2 35 37
|
3bitr4i |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ 𝑥 = 𝑦 ) ↔ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
39 |
38
|
exbii |
⊢ ( ∃ 𝑦 ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ 𝑥 = 𝑦 ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
40 |
|
eu6 |
⊢ ( ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∃ 𝑦 ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ 𝑥 = 𝑦 ) ) |
41 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
42 |
39 40 41
|
3bitr4i |
⊢ ( ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∃ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) |
43 |
1 42
|
bitri |
⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) |