Metamath Proof Explorer


Theorem reu6i

Description: A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Assertion reu6i ( ( 𝐵𝐴 ∧ ∀ 𝑥𝐴 ( 𝜑𝑥 = 𝐵 ) ) → ∃! 𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 eqeq2 ( 𝑦 = 𝐵 → ( 𝑥 = 𝑦𝑥 = 𝐵 ) )
2 1 bibi2d ( 𝑦 = 𝐵 → ( ( 𝜑𝑥 = 𝑦 ) ↔ ( 𝜑𝑥 = 𝐵 ) ) )
3 2 ralbidv ( 𝑦 = 𝐵 → ( ∀ 𝑥𝐴 ( 𝜑𝑥 = 𝑦 ) ↔ ∀ 𝑥𝐴 ( 𝜑𝑥 = 𝐵 ) ) )
4 3 rspcev ( ( 𝐵𝐴 ∧ ∀ 𝑥𝐴 ( 𝜑𝑥 = 𝐵 ) ) → ∃ 𝑦𝐴𝑥𝐴 ( 𝜑𝑥 = 𝑦 ) )
5 reu6 ( ∃! 𝑥𝐴 𝜑 ↔ ∃ 𝑦𝐴𝑥𝐴 ( 𝜑𝑥 = 𝑦 ) )
6 4 5 sylibr ( ( 𝐵𝐴 ∧ ∀ 𝑥𝐴 ( 𝜑𝑥 = 𝐵 ) ) → ∃! 𝑥𝐴 𝜑 )