Description: A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | reu6i | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝑥 = 𝐵 ) ) → ∃! 𝑥 ∈ 𝐴 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝐵 ) ) | |
2 | 1 | bibi2d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ( 𝜑 ↔ 𝑥 = 𝐵 ) ) ) |
3 | 2 | ralbidv | ⊢ ( 𝑦 = 𝐵 → ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝑥 = 𝐵 ) ) ) |
4 | 3 | rspcev | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝑥 = 𝐵 ) ) → ∃ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) |
5 | reu6 | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) | |
6 | 4 5 | sylibr | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝑥 = 𝐵 ) ) → ∃! 𝑥 ∈ 𝐴 𝜑 ) |