| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rmo4.1 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
|
reu3 |
⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑧 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑧 ) ) ) |
| 3 |
|
equequ1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑧 ↔ 𝑦 = 𝑧 ) ) |
| 4 |
|
equcom |
⊢ ( 𝑦 = 𝑧 ↔ 𝑧 = 𝑦 ) |
| 5 |
3 4
|
bitrdi |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑧 ↔ 𝑧 = 𝑦 ) ) |
| 6 |
1 5
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 → 𝑥 = 𝑧 ) ↔ ( 𝜓 → 𝑧 = 𝑦 ) ) ) |
| 7 |
6
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑧 = 𝑦 ) ) |
| 8 |
7
|
rexbii |
⊢ ( ∃ 𝑧 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑧 ) ↔ ∃ 𝑧 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑧 = 𝑦 ) ) |
| 9 |
|
equequ1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 = 𝑦 ↔ 𝑥 = 𝑦 ) ) |
| 10 |
9
|
imbi2d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝜓 → 𝑧 = 𝑦 ) ↔ ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
| 11 |
10
|
ralbidv |
⊢ ( 𝑧 = 𝑥 → ( ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑧 = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
| 12 |
11
|
cbvrexvw |
⊢ ( ∃ 𝑧 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑧 = 𝑦 ) ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) |
| 13 |
8 12
|
bitri |
⊢ ( ∃ 𝑧 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑧 ) ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) |
| 14 |
13
|
anbi2i |
⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑧 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑧 ) ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
| 15 |
2 14
|
bitri |
⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |