Step |
Hyp |
Ref |
Expression |
1 |
|
rmo4.1 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
1
|
cbvreuvw |
⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃! 𝑦 ∈ 𝐴 𝜓 ) |
3 |
|
reu6 |
⊢ ( ∃! 𝑦 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜓 ↔ 𝑦 = 𝑥 ) ) |
4 |
|
dfbi2 |
⊢ ( ( 𝜓 ↔ 𝑦 = 𝑥 ) ↔ ( ( 𝜓 → 𝑦 = 𝑥 ) ∧ ( 𝑦 = 𝑥 → 𝜓 ) ) ) |
5 |
4
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝜓 ↔ 𝑦 = 𝑥 ) ↔ ∀ 𝑦 ∈ 𝐴 ( ( 𝜓 → 𝑦 = 𝑥 ) ∧ ( 𝑦 = 𝑥 → 𝜓 ) ) ) |
6 |
|
r19.26 |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( ( 𝜓 → 𝑦 = 𝑥 ) ∧ ( 𝑦 = 𝑥 → 𝜓 ) ) ↔ ( ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑦 = 𝑥 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 = 𝑥 → 𝜓 ) ) ) |
7 |
|
ancom |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ↔ ( ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ∧ 𝜑 ) ) |
8 |
|
equcom |
⊢ ( 𝑥 = 𝑦 ↔ 𝑦 = 𝑥 ) |
9 |
8
|
imbi2i |
⊢ ( ( 𝜓 → 𝑥 = 𝑦 ) ↔ ( 𝜓 → 𝑦 = 𝑥 ) ) |
10 |
9
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑦 = 𝑥 ) ) |
11 |
10
|
a1i |
⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑦 = 𝑥 ) ) ) |
12 |
|
biimt |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) |
13 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑦 = 𝑥 → 𝜓 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ( 𝑦 = 𝑥 → 𝜓 ) ) ) |
14 |
|
bi2.04 |
⊢ ( ( 𝑦 ∈ 𝐴 → ( 𝑦 = 𝑥 → 𝜓 ) ) ↔ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐴 → 𝜓 ) ) ) |
15 |
14
|
albii |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ( 𝑦 = 𝑥 → 𝜓 ) ) ↔ ∀ 𝑦 ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐴 → 𝜓 ) ) ) |
16 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
17 |
16 1
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ( 𝑦 ∈ 𝐴 → 𝜓 ) ) ) |
18 |
17
|
bicomd |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑦 ∈ 𝐴 → 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) |
19 |
18
|
equcoms |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 ∈ 𝐴 → 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) |
20 |
19
|
equsalvw |
⊢ ( ∀ 𝑦 ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐴 → 𝜓 ) ) ↔ ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
21 |
13 15 20
|
3bitrri |
⊢ ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑦 = 𝑥 → 𝜓 ) ) |
22 |
12 21
|
bitrdi |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑦 = 𝑥 → 𝜓 ) ) ) |
23 |
11 22
|
anbi12d |
⊢ ( 𝑥 ∈ 𝐴 → ( ( ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ∧ 𝜑 ) ↔ ( ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑦 = 𝑥 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 = 𝑥 → 𝜓 ) ) ) ) |
24 |
7 23
|
syl5bb |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ↔ ( ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑦 = 𝑥 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 = 𝑥 → 𝜓 ) ) ) ) |
25 |
6 24
|
bitr4id |
⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ( ( 𝜓 → 𝑦 = 𝑥 ) ∧ ( 𝑦 = 𝑥 → 𝜓 ) ) ↔ ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) ) |
26 |
5 25
|
syl5bb |
⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ( 𝜓 ↔ 𝑦 = 𝑥 ) ↔ ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) ) |
27 |
26
|
rexbiia |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜓 ↔ 𝑦 = 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
28 |
2 3 27
|
3bitri |
⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |