Metamath Proof Explorer


Theorem reu8nf

Description: Restricted uniqueness using implicit substitution. This version of reu8 uses a nonfreeness hypothesis for x and ps instead of distinct variable conditions. (Contributed by AV, 21-Jan-2022)

Ref Expression
Hypotheses reu8nf.1 𝑥 𝜓
reu8nf.2 𝑥 𝜒
reu8nf.3 ( 𝑥 = 𝑤 → ( 𝜑𝜒 ) )
reu8nf.4 ( 𝑤 = 𝑦 → ( 𝜒𝜓 ) )
Assertion reu8nf ( ∃! 𝑥𝐴 𝜑 ↔ ∃ 𝑥𝐴 ( 𝜑 ∧ ∀ 𝑦𝐴 ( 𝜓𝑥 = 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 reu8nf.1 𝑥 𝜓
2 reu8nf.2 𝑥 𝜒
3 reu8nf.3 ( 𝑥 = 𝑤 → ( 𝜑𝜒 ) )
4 reu8nf.4 ( 𝑤 = 𝑦 → ( 𝜒𝜓 ) )
5 nfv 𝑤 𝜑
6 5 2 3 cbvreuw ( ∃! 𝑥𝐴 𝜑 ↔ ∃! 𝑤𝐴 𝜒 )
7 4 reu8 ( ∃! 𝑤𝐴 𝜒 ↔ ∃ 𝑤𝐴 ( 𝜒 ∧ ∀ 𝑦𝐴 ( 𝜓𝑤 = 𝑦 ) ) )
8 nfcv 𝑥 𝐴
9 nfv 𝑥 𝑤 = 𝑦
10 1 9 nfim 𝑥 ( 𝜓𝑤 = 𝑦 )
11 8 10 nfralw 𝑥𝑦𝐴 ( 𝜓𝑤 = 𝑦 )
12 2 11 nfan 𝑥 ( 𝜒 ∧ ∀ 𝑦𝐴 ( 𝜓𝑤 = 𝑦 ) )
13 nfv 𝑤 ( 𝜑 ∧ ∀ 𝑦𝐴 ( 𝜓𝑥 = 𝑦 ) )
14 3 bicomd ( 𝑥 = 𝑤 → ( 𝜒𝜑 ) )
15 14 equcoms ( 𝑤 = 𝑥 → ( 𝜒𝜑 ) )
16 equequ1 ( 𝑤 = 𝑥 → ( 𝑤 = 𝑦𝑥 = 𝑦 ) )
17 16 imbi2d ( 𝑤 = 𝑥 → ( ( 𝜓𝑤 = 𝑦 ) ↔ ( 𝜓𝑥 = 𝑦 ) ) )
18 17 ralbidv ( 𝑤 = 𝑥 → ( ∀ 𝑦𝐴 ( 𝜓𝑤 = 𝑦 ) ↔ ∀ 𝑦𝐴 ( 𝜓𝑥 = 𝑦 ) ) )
19 15 18 anbi12d ( 𝑤 = 𝑥 → ( ( 𝜒 ∧ ∀ 𝑦𝐴 ( 𝜓𝑤 = 𝑦 ) ) ↔ ( 𝜑 ∧ ∀ 𝑦𝐴 ( 𝜓𝑥 = 𝑦 ) ) ) )
20 12 13 19 cbvrexw ( ∃ 𝑤𝐴 ( 𝜒 ∧ ∀ 𝑦𝐴 ( 𝜓𝑤 = 𝑦 ) ) ↔ ∃ 𝑥𝐴 ( 𝜑 ∧ ∀ 𝑦𝐴 ( 𝜓𝑥 = 𝑦 ) ) )
21 6 7 20 3bitri ( ∃! 𝑥𝐴 𝜑 ↔ ∃ 𝑥𝐴 ( 𝜑 ∧ ∀ 𝑦𝐴 ( 𝜓𝑥 = 𝑦 ) ) )