Metamath Proof Explorer


Theorem reuan

Description: Introduction of a conjunct into restricted unique existential quantifier, analogous to euan . (Contributed by Alexander van der Vekens, 2-Jul-2017)

Ref Expression
Hypothesis rmoanim.1 𝑥 𝜑
Assertion reuan ( ∃! 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( 𝜑 ∧ ∃! 𝑥𝐴 𝜓 ) )

Proof

Step Hyp Ref Expression
1 rmoanim.1 𝑥 𝜑
2 simpl ( ( 𝜑𝜓 ) → 𝜑 )
3 2 a1i ( 𝑥𝐴 → ( ( 𝜑𝜓 ) → 𝜑 ) )
4 1 3 rexlimi ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) → 𝜑 )
5 4 adantr ( ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) ∧ ∃* 𝑥𝐴 ( 𝜑𝜓 ) ) → 𝜑 )
6 simpr ( ( 𝜑𝜓 ) → 𝜓 )
7 6 reximi ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) → ∃ 𝑥𝐴 𝜓 )
8 7 adantr ( ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) ∧ ∃* 𝑥𝐴 ( 𝜑𝜓 ) ) → ∃ 𝑥𝐴 𝜓 )
9 nfre1 𝑥𝑥𝐴 ( 𝜑𝜓 )
10 4 adantr ( ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) ∧ 𝑥𝐴 ) → 𝜑 )
11 10 a1d ( ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) ∧ 𝑥𝐴 ) → ( 𝜓𝜑 ) )
12 11 ancrd ( ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) ∧ 𝑥𝐴 ) → ( 𝜓 → ( 𝜑𝜓 ) ) )
13 6 12 impbid2 ( ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) ∧ 𝑥𝐴 ) → ( ( 𝜑𝜓 ) ↔ 𝜓 ) )
14 9 13 rmobida ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∃* 𝑥𝐴 ( 𝜑𝜓 ) ↔ ∃* 𝑥𝐴 𝜓 ) )
15 14 biimpa ( ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) ∧ ∃* 𝑥𝐴 ( 𝜑𝜓 ) ) → ∃* 𝑥𝐴 𝜓 )
16 5 8 15 jca32 ( ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) ∧ ∃* 𝑥𝐴 ( 𝜑𝜓 ) ) → ( 𝜑 ∧ ( ∃ 𝑥𝐴 𝜓 ∧ ∃* 𝑥𝐴 𝜓 ) ) )
17 reu5 ( ∃! 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) ∧ ∃* 𝑥𝐴 ( 𝜑𝜓 ) ) )
18 reu5 ( ∃! 𝑥𝐴 𝜓 ↔ ( ∃ 𝑥𝐴 𝜓 ∧ ∃* 𝑥𝐴 𝜓 ) )
19 18 anbi2i ( ( 𝜑 ∧ ∃! 𝑥𝐴 𝜓 ) ↔ ( 𝜑 ∧ ( ∃ 𝑥𝐴 𝜓 ∧ ∃* 𝑥𝐴 𝜓 ) ) )
20 16 17 19 3imtr4i ( ∃! 𝑥𝐴 ( 𝜑𝜓 ) → ( 𝜑 ∧ ∃! 𝑥𝐴 𝜓 ) )
21 ibar ( 𝜑 → ( 𝜓 ↔ ( 𝜑𝜓 ) ) )
22 21 adantr ( ( 𝜑𝑥𝐴 ) → ( 𝜓 ↔ ( 𝜑𝜓 ) ) )
23 1 22 reubida ( 𝜑 → ( ∃! 𝑥𝐴 𝜓 ↔ ∃! 𝑥𝐴 ( 𝜑𝜓 ) ) )
24 23 biimpa ( ( 𝜑 ∧ ∃! 𝑥𝐴 𝜓 ) → ∃! 𝑥𝐴 ( 𝜑𝜓 ) )
25 20 24 impbii ( ∃! 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( 𝜑 ∧ ∃! 𝑥𝐴 𝜓 ) )