Description: Cancellation law for restricted unique existential quantification. (Contributed by Peter Mazsa, 12-Feb-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | reuanid | ⊢ ( ∃! 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∃! 𝑥 ∈ 𝐴 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anabs5 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
2 | 1 | eubii | ⊢ ( ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
3 | df-reu | ⊢ ( ∃! 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) | |
4 | df-reu | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
5 | 2 3 4 | 3bitr4i | ⊢ ( ∃! 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∃! 𝑥 ∈ 𝐴 𝜑 ) |