Metamath Proof Explorer


Theorem reuanid

Description: Cancellation law for restricted unique existential quantification. (Contributed by Peter Mazsa, 12-Feb-2018) (Proof shortened by Wolf Lammen, 12-Jan-2025)

Ref Expression
Assertion reuanid ( ∃! 𝑥𝐴 ( 𝑥𝐴𝜑 ) ↔ ∃! 𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 ibar ( 𝑥𝐴 → ( 𝜑 ↔ ( 𝑥𝐴𝜑 ) ) )
2 1 bicomd ( 𝑥𝐴 → ( ( 𝑥𝐴𝜑 ) ↔ 𝜑 ) )
3 2 reubiia ( ∃! 𝑥𝐴 ( 𝑥𝐴𝜑 ) ↔ ∃! 𝑥𝐴 𝜑 )