Metamath Proof Explorer


Theorem reuanid

Description: Cancellation law for restricted unique existential quantification. (Contributed by Peter Mazsa, 12-Feb-2018)

Ref Expression
Assertion reuanid ( ∃! 𝑥𝐴 ( 𝑥𝐴𝜑 ) ↔ ∃! 𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 anabs5 ( ( 𝑥𝐴 ∧ ( 𝑥𝐴𝜑 ) ) ↔ ( 𝑥𝐴𝜑 ) )
2 1 eubii ( ∃! 𝑥 ( 𝑥𝐴 ∧ ( 𝑥𝐴𝜑 ) ) ↔ ∃! 𝑥 ( 𝑥𝐴𝜑 ) )
3 df-reu ( ∃! 𝑥𝐴 ( 𝑥𝐴𝜑 ) ↔ ∃! 𝑥 ( 𝑥𝐴 ∧ ( 𝑥𝐴𝜑 ) ) )
4 df-reu ( ∃! 𝑥𝐴 𝜑 ↔ ∃! 𝑥 ( 𝑥𝐴𝜑 ) )
5 2 3 4 3bitr4i ( ∃! 𝑥𝐴 ( 𝑥𝐴𝜑 ) ↔ ∃! 𝑥𝐴 𝜑 )