Metamath Proof Explorer


Theorem reuanidOLD

Description: Obsolete version of reuanid as of 12-Jan-2025. (Contributed by Peter Mazsa, 12-Feb-2018) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion reuanidOLD ( ∃! 𝑥𝐴 ( 𝑥𝐴𝜑 ) ↔ ∃! 𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 anabs5 ( ( 𝑥𝐴 ∧ ( 𝑥𝐴𝜑 ) ) ↔ ( 𝑥𝐴𝜑 ) )
2 1 eubii ( ∃! 𝑥 ( 𝑥𝐴 ∧ ( 𝑥𝐴𝜑 ) ) ↔ ∃! 𝑥 ( 𝑥𝐴𝜑 ) )
3 df-reu ( ∃! 𝑥𝐴 ( 𝑥𝐴𝜑 ) ↔ ∃! 𝑥 ( 𝑥𝐴 ∧ ( 𝑥𝐴𝜑 ) ) )
4 df-reu ( ∃! 𝑥𝐴 𝜑 ↔ ∃! 𝑥 ( 𝑥𝐴𝜑 ) )
5 2 3 4 3bitr4i ( ∃! 𝑥𝐴 ( 𝑥𝐴𝜑 ) ↔ ∃! 𝑥𝐴 𝜑 )