Metamath Proof Explorer


Theorem reubida

Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by Mario Carneiro, 19-Nov-2016)

Ref Expression
Hypotheses reubida.1 𝑥 𝜑
reubida.2 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
Assertion reubida ( 𝜑 → ( ∃! 𝑥𝐴 𝜓 ↔ ∃! 𝑥𝐴 𝜒 ) )

Proof

Step Hyp Ref Expression
1 reubida.1 𝑥 𝜑
2 reubida.2 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
3 2 pm5.32da ( 𝜑 → ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑥𝐴𝜒 ) ) )
4 1 3 eubid ( 𝜑 → ( ∃! 𝑥 ( 𝑥𝐴𝜓 ) ↔ ∃! 𝑥 ( 𝑥𝐴𝜒 ) ) )
5 df-reu ( ∃! 𝑥𝐴 𝜓 ↔ ∃! 𝑥 ( 𝑥𝐴𝜓 ) )
6 df-reu ( ∃! 𝑥𝐴 𝜒 ↔ ∃! 𝑥 ( 𝑥𝐴𝜒 ) )
7 4 5 6 3bitr4g ( 𝜑 → ( ∃! 𝑥𝐴 𝜓 ↔ ∃! 𝑥𝐴 𝜒 ) )