Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by Mario Carneiro, 19-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rmobida.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| rmobida.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | reubida | ⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐴 𝜓 ↔ ∃! 𝑥 ∈ 𝐴 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmobida.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | rmobida.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 3 | 2 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 4 | 1 3 | eubid | ⊢ ( 𝜑 → ( ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 5 | df-reu | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜓 ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) | |
| 6 | df-reu | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜒 ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) | |
| 7 | 4 5 6 | 3bitr4g | ⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐴 𝜓 ↔ ∃! 𝑥 ∈ 𝐴 𝜒 ) ) |