Metamath Proof Explorer
		
		
		
		Description:  Formula-building rule for restricted existential uniqueness quantifier
       (deduction form).  (Contributed by NM, 17-Oct-1996)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | rmobidv.1 | ⊢ ( 𝜑  →  ( 𝜓  ↔  𝜒 ) ) | 
				
					|  | Assertion | reubidv | ⊢  ( 𝜑  →  ( ∃! 𝑥  ∈  𝐴 𝜓  ↔  ∃! 𝑥  ∈  𝐴 𝜒 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rmobidv.1 | ⊢ ( 𝜑  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 3 | 2 | reubidva | ⊢ ( 𝜑  →  ( ∃! 𝑥  ∈  𝐴 𝜓  ↔  ∃! 𝑥  ∈  𝐴 𝜒 ) ) |