Metamath Proof Explorer


Theorem reubidv

Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 17-Oct-1996)

Ref Expression
Hypothesis reubidv.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion reubidv ( 𝜑 → ( ∃! 𝑥𝐴 𝜓 ↔ ∃! 𝑥𝐴 𝜒 ) )

Proof

Step Hyp Ref Expression
1 reubidv.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 1 adantr ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
3 2 reubidva ( 𝜑 → ( ∃! 𝑥𝐴 𝜓 ↔ ∃! 𝑥𝐴 𝜒 ) )