Metamath Proof Explorer


Theorem reubidva

Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 13-Nov-2004) Reduce axiom usage. (Revised by Wolf Lammen, 14-Jan-2023)

Ref Expression
Hypothesis reubidva.1 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
Assertion reubidva ( 𝜑 → ( ∃! 𝑥𝐴 𝜓 ↔ ∃! 𝑥𝐴 𝜒 ) )

Proof

Step Hyp Ref Expression
1 reubidva.1 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
2 1 pm5.32da ( 𝜑 → ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑥𝐴𝜒 ) ) )
3 2 eubidv ( 𝜑 → ( ∃! 𝑥 ( 𝑥𝐴𝜓 ) ↔ ∃! 𝑥 ( 𝑥𝐴𝜒 ) ) )
4 df-reu ( ∃! 𝑥𝐴 𝜓 ↔ ∃! 𝑥 ( 𝑥𝐴𝜓 ) )
5 df-reu ( ∃! 𝑥𝐴 𝜒 ↔ ∃! 𝑥 ( 𝑥𝐴𝜒 ) )
6 3 4 5 3bitr4g ( 𝜑 → ( ∃! 𝑥𝐴 𝜓 ↔ ∃! 𝑥𝐴 𝜒 ) )