Metamath Proof Explorer


Theorem reubiia

Description: Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 14-Nov-2004)

Ref Expression
Hypothesis reubiia.1 ( 𝑥𝐴 → ( 𝜑𝜓 ) )
Assertion reubiia ( ∃! 𝑥𝐴 𝜑 ↔ ∃! 𝑥𝐴 𝜓 )

Proof

Step Hyp Ref Expression
1 reubiia.1 ( 𝑥𝐴 → ( 𝜑𝜓 ) )
2 1 pm5.32i ( ( 𝑥𝐴𝜑 ) ↔ ( 𝑥𝐴𝜓 ) )
3 2 eubii ( ∃! 𝑥 ( 𝑥𝐴𝜑 ) ↔ ∃! 𝑥 ( 𝑥𝐴𝜓 ) )
4 df-reu ( ∃! 𝑥𝐴 𝜑 ↔ ∃! 𝑥 ( 𝑥𝐴𝜑 ) )
5 df-reu ( ∃! 𝑥𝐴 𝜓 ↔ ∃! 𝑥 ( 𝑥𝐴𝜓 ) )
6 3 4 5 3bitr4i ( ∃! 𝑥𝐴 𝜑 ↔ ∃! 𝑥𝐴 𝜓 )