Metamath Proof Explorer


Theorem reuen1

Description: Two ways to express "exactly one". (Contributed by Stefan O'Rear, 28-Oct-2014)

Ref Expression
Assertion reuen1 ( ∃! 𝑥𝐴 𝜑 ↔ { 𝑥𝐴𝜑 } ≈ 1o )

Proof

Step Hyp Ref Expression
1 reusn ( ∃! 𝑥𝐴 𝜑 ↔ ∃ 𝑦 { 𝑥𝐴𝜑 } = { 𝑦 } )
2 en1 ( { 𝑥𝐴𝜑 } ≈ 1o ↔ ∃ 𝑦 { 𝑥𝐴𝜑 } = { 𝑦 } )
3 1 2 bitr4i ( ∃! 𝑥𝐴 𝜑 ↔ { 𝑥𝐴𝜑 } ≈ 1o )