Description: Two ways to express "exactly one". (Contributed by Stefan O'Rear, 28-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reuen1 | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≈ 1o ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reusn | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑦 { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑦 } ) | |
| 2 | en1 | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≈ 1o ↔ ∃ 𝑦 { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑦 } ) | |
| 3 | 1 2 | bitr4i | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≈ 1o ) |