Metamath Proof Explorer


Theorem reueq

Description: Equality has existential uniqueness. (Contributed by Mario Carneiro, 1-Sep-2015)

Ref Expression
Assertion reueq ( 𝐵𝐴 ↔ ∃! 𝑥𝐴 𝑥 = 𝐵 )

Proof

Step Hyp Ref Expression
1 risset ( 𝐵𝐴 ↔ ∃ 𝑥𝐴 𝑥 = 𝐵 )
2 moeq ∃* 𝑥 𝑥 = 𝐵
3 mormo ( ∃* 𝑥 𝑥 = 𝐵 → ∃* 𝑥𝐴 𝑥 = 𝐵 )
4 2 3 ax-mp ∃* 𝑥𝐴 𝑥 = 𝐵
5 reu5 ( ∃! 𝑥𝐴 𝑥 = 𝐵 ↔ ( ∃ 𝑥𝐴 𝑥 = 𝐵 ∧ ∃* 𝑥𝐴 𝑥 = 𝐵 ) )
6 4 5 mpbiran2 ( ∃! 𝑥𝐴 𝑥 = 𝐵 ↔ ∃ 𝑥𝐴 𝑥 = 𝐵 )
7 1 6 bitr4i ( 𝐵𝐴 ↔ ∃! 𝑥𝐴 𝑥 = 𝐵 )