Description: Equality has existential uniqueness. (Contributed by Mario Carneiro, 1-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | reueq | ⊢ ( 𝐵 ∈ 𝐴 ↔ ∃! 𝑥 ∈ 𝐴 𝑥 = 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | risset | ⊢ ( 𝐵 ∈ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 𝑥 = 𝐵 ) | |
2 | moeq | ⊢ ∃* 𝑥 𝑥 = 𝐵 | |
3 | mormo | ⊢ ( ∃* 𝑥 𝑥 = 𝐵 → ∃* 𝑥 ∈ 𝐴 𝑥 = 𝐵 ) | |
4 | 2 3 | ax-mp | ⊢ ∃* 𝑥 ∈ 𝐴 𝑥 = 𝐵 |
5 | reu5 | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝑥 = 𝐵 ↔ ( ∃ 𝑥 ∈ 𝐴 𝑥 = 𝐵 ∧ ∃* 𝑥 ∈ 𝐴 𝑥 = 𝐵 ) ) | |
6 | 4 5 | mpbiran2 | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑥 = 𝐵 ) |
7 | 1 6 | bitr4i | ⊢ ( 𝐵 ∈ 𝐴 ↔ ∃! 𝑥 ∈ 𝐴 𝑥 = 𝐵 ) |