Metamath Proof Explorer


Theorem reueq1

Description: Equality theorem for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004) Remove usage of ax-10 , ax-11 , and ax-12 . (Revised by Steven Nguyen, 30-Apr-2023) Avoid ax-8 . (Revised by Wolf Lammen, 12-Mar-2025)

Ref Expression
Assertion reueq1 ( 𝐴 = 𝐵 → ( ∃! 𝑥𝐴 𝜑 ↔ ∃! 𝑥𝐵 𝜑 ) )

Proof

Step Hyp Ref Expression
1 rexeq ( 𝐴 = 𝐵 → ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥𝐵 𝜑 ) )
2 rmoeq1 ( 𝐴 = 𝐵 → ( ∃* 𝑥𝐴 𝜑 ↔ ∃* 𝑥𝐵 𝜑 ) )
3 1 2 anbi12d ( 𝐴 = 𝐵 → ( ( ∃ 𝑥𝐴 𝜑 ∧ ∃* 𝑥𝐴 𝜑 ) ↔ ( ∃ 𝑥𝐵 𝜑 ∧ ∃* 𝑥𝐵 𝜑 ) ) )
4 reu5 ( ∃! 𝑥𝐴 𝜑 ↔ ( ∃ 𝑥𝐴 𝜑 ∧ ∃* 𝑥𝐴 𝜑 ) )
5 reu5 ( ∃! 𝑥𝐵 𝜑 ↔ ( ∃ 𝑥𝐵 𝜑 ∧ ∃* 𝑥𝐵 𝜑 ) )
6 3 4 5 3bitr4g ( 𝐴 = 𝐵 → ( ∃! 𝑥𝐴 𝜑 ↔ ∃! 𝑥𝐵 𝜑 ) )